Table of Contents

1.0 SUMMARY.. 1

2.0 INTRODUCTION... 7

3.0 RELIANCE ON OTHER EXPERTS...11

4.0 PROPERTY DESCRIPTION AND LOCATION..11

4.1 Property Location..11

4.2 Property Description..13

4.3 Agreements, Interests and Royalties...13

4.4 Permitting..15

5.0 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY ... 15

6.0 HISTORY ..16

7.0 GEOLOGICAL SETTING & MINERALIZATION ...24

7.1 District Geology ...24

7.2 Property Geology ..26

7.3 Mineralization ..37

7.4 Structure ...39

8.0 DEPOSIT TYPE..41

8.1 Introduction ...41

8.2 Characteristics of low sulphidation epithermal systems ...42

9.0 EXPLORATION ..43

9.1 Introduction ...43

9.2 Geological Mapping ..43

9.3 Surface Sampling ..46

9.3.1 Introduction ... 46

9.3.2 Quartz Vein Sampling ... 46

9.3.3 Silver-Rich Sulfsalt & Sulphide Surface Sampling ...46

9.3.4 Underground sampling ..52

9.4 Sampling Method and Approach ...57

10.0 DRILLING ..59

11.0 SAMPLING PREPARATION, ANALYSES AND SECURITY ...59

11.1 Bayhorse Surface Sampling ..59

11.2 Bayhorse Underground Sampling ..60
12.0 DATA VERIFICATION

12.1 Historical Data

12.2 Recent Work By Bayhorse Silver

12.3 Author’s Property Visits

13.0 MINERAL PROCESSING AND METALLURGICAL TESTING

13.1 Steinert Ore Sorter

13.2 Met-Solve Floatation Test Work (March 2014)

13.4 Heavy Liquid Separation Testing, Met-Solve Labs Inc. (2016)

13.5 Met-Solve Thiosulphate Leach Test (April 2014)

14.0 MINERAL RESOURCE ESTIMATES

14.1 Introduction

14.2 Data

 14.2.1 Drillhole Database Validation
 14.2.2 Micromine Database

14.3 Lithological Model/Lode Interpretation

14.4 Quality Control

14.5 Drillhole/Assay Flagging and Compositing

14.6 Top Cut Capping

14.7 Grade Continuity (Variography)

14.8 Search Ellipsoids

14.9 Bulk Density (Specific Gravity)

14.10 Block Model Extents and Block Size

14.11 Grade Estimation

14.12 Model Validation

 14.12.1 Visual Validation
 14.12.2 Statistical Validation
 14.12.3 Northing Comparison
 14.12.4 Easting Comparison
 14.12.5 Elevation Comparison

14.13 Resource Classification

14.15 Mineral Resource Reporting

15.0 ADJACENT PROPERTIES
16.0 OTHER RELEVANT DATA AND INFORMATION ... 101
17.0 INTERPRETATION AND CONCLUSIONS .. 101
18.0 RECOMMENDATIONS .. 106
REFERENCES ... 109
CERTIFICATE OF AUTHOR ... 112
CERTIFICATE OF AUTHOR ... 113
CERTIFICATE OF AUTHOR ... 114
CERTIFICATE OF AUTHOR ... 115
APPENDIX 1 – List of Abbreviations, Units and Measurements .. 116

List of Figures
Figure 2.1 Location of the Bayhorse Property, eastern Oregon, USA.............................. 8
Figure 4.1 Bayhorse Silver Mine Property claim map...12
Figure 6.1 Map showing the historic Bayhorse Mine underground workings and location of the 21 surface assay samples collected in November 2013 (Ray, 2015)..............19
Figure 6.2 Reported silver assays from historic underground channel sampling, Intermediate Level, Bayhorse Silver Mine. Digitized by Campbell Ryland from data after Herdrick (1981)..21
Figure 6.3 North-South cross-sections (view West) showing results of some historic (1984) underground drilling, Intermediate Level, Bayhorse Silver Mine. Data digitized by Campbell Ryland from unpublished records of Silver King Mines..23
Figure 7.1 Geology of the Huntington & Olds Ferry districts, eastern Oregon showing location of the Bayhorse property (after Brooks, 1979)...25
Figure 7.2 Geology of the Bayhorse Mine property with inset of the underground workings. Geology and legend adapted after Livingston (1923) and Full (1959).................................27
Figure 7.3 North-south cross section of the Upper Adit area, Bayhorse Mine. Adapted after Livingston (1923) and Full (1959)...28
Figure 7.4 Geology of the Bayhorse Mine area (after Conway et al., 2014). Note cross section lines A-A, B-B, C-C and D-D-D”...30
Figure 7.5 Geological cross section of the Bayhorse Mine showing the location of cross section lines B-B’, C-C’ and D-D’-D” (after Conway et al., 2014).........................31
Figure 7.6 Geological cross section of the Bayhorse Mine showing the location of cross section lines A-A’ and D-D’-D” (after Conway et al., 2014)..............................32
Figure 7.7 Geological cross section of the Bayhorse Mine showing the location of cross section lines A-A’ and D-D’-D” (after Conway et al., 2014)..............................33
Figure 7.8 Geological cross section of the Bayhorse Mine showing the location of cross section lines A-A’, B-B and C-C’ (after Conway et al., 2014)...............................34
Figure 9.1 2013 Rock Grab Sample Locations (Ray, 2015) .. 51
Figure 9.2 Early 2018 Underground Samples from Tables 9.3 and 9.4. .. 55
Figure 9.3 2018 Underground Samples from Tables 9.5 and 9.6. .. 58
Figure 12.1 An example of an historical ‘round assay’ sketch (c. 1984) for the 120 and 150 cross-cuts at the western end of the Mid Level workings (plan view, scale is 1” or 1 grid square = 20’). ... 63
Figure 12.2 Historical rib chip-channel sample locations in and around the Big Dog Stope, Intermediate Level, Bayhorse Mine (Doler, 1976). ... 64
Figure 12.3 Locations of rock samples collected by M. Dufresne, P.Geol. (APEX) during his site visit to the Property, June 2018. ... 67
Figure 12.4 Confirmation samples collected by A. Turner, P. Geol. (APEX) during his August 2018 site visit. ... 68
Figure 14.1 Plan view of the Bayhorse Silver mineralization Interpretation .. 75
Figure 14.2 Bayhorse Silver long section of the mineralization model, underground development and drillhole/channel lines ... 75
Figure 14.3 Bayhorse Silver schematic sections showing constraining fault zone. 78
Figure 14.4 Histogram of the un-composited silver assays constrained within the lodes. 79
Figure 14.5 Probability Plot of the un-composited silver assay dataset constrained within the lodes. ... 80
Figure 14.6 Histogram of sample length for the Bayhorse Silver un-composited assay file situated within the mineralization model ... 82
Figure 14.7 Log Probability plot of the silver composites situated within the mineral lodes 84
Figure 14.8 Log histogram of the silver composites situated within the mineralized horizon 85
Figure 14.9 Bayhorse Silver strike variogram for the composited silver sample data mineralization. .. 86
Figure 14.10 Bayhorse Silver cross strike variogram for the composited silver sample data mineralization .. 87
Figure 14.11 Bayhorse Silver third direction variogram for the composited silver sample data mineralization ... 88
Figure 14.12 Bayhorse schematic section showing the search orientation trend surface with the coded dip and dip direction data in the block model 89
Figure 14.13 Transform cross section of Bayhorse silver deposit showing Bayhorse Silver Block silver grade (opt) versus composited sample grade .. 92
Figure 14.14 Transform cross section of Bayhorse silver deposit showing Bayhorse Silver Block silver grade (opt) versus composited sample grade .. 93
Figure 14.15 Northing SWATH plot of sample composite average grade versus estimated grade in the block model for silver ... 94
Figure 14.16 Easting SWATH plot of sample composite average grade versus estimated grade in the block model for silver...95

Figure 14.17 Elevation SWATH plot of sample composite average grade versus estimated grade in the block model for silver...96

List of Photos

Photo 2.1: View looking southeast from the Upper Adit at UTM 0482517E-4921978N showing the road leading to the Intermediate Level Adit (out of sight to the right) and the large enclosure that shelters the Steinert ore sorter. .. 9

Photo 5.1 Rehabilitated portal for the Intermediate Level (Photo taken June 2018). Left to right Clay Conway, Levi Duncan and Mike Dufresne...16

Photo 6.1 Newly reopened and renovated Upper Adit located at UTM 0482517E-4921978N. ...18

Photo 6.2 The Intermediate Level portal as it was in 2013. The massive rhyolite sill overlies darker tuffaceous Huntington Formation rocks...18

Photo 7.1 Weatherby Formation schistose meta-sediments with small Z-kink folds.35

Photo 7.2 Huntington Formation monomictic andesite tuff breccia or debris flow. Matrix-supported, sub-angular to sub-rounded andesite clasts up to 40 cm long in a tuffaceous groundmass. UTM 482566E-4921944N.................................35

Photo 7.3 Part of the Sunshine Thrust Fault as seen on surface immediately north of the Upper Adit with a slice of Huntington tuffs (purple) between two faulted units of rhyolite (white). UTM 0482517E-4921978N ...36

Photo 7.4 Sulfosalts-sphalerite-rich mineralization (dark) partly replacing silicified pink rhyolite. Note the delicate scalloped contacts between the mineralization and the host-rocks. Rock dump at UTM 482542E-4922065N.................................38

Photo 8.1 Stockworks of clay-chlorite alteration with some tetrahedrite mineralization hosted by the Huntington Formation as seen in the Legend Zone, Intermediate Level. ...42

Photo 9.1 Historic rock dump at UTM 482542E-4922065N from where assay samples GRBH-01 to 05 and 07, 08 were collected...44

Photo 9.2 Float of vuggy, rust-weathering quartz veins cutting probable Weatherby Formation meta-sediments, west and upslope of the Intermediate Adit...............47

Photo 9.3 Silicified and altered rhyolite (brown and pink) cut by fracture-controlled tetrahedrite-tennantite-rich stockwork veins (dark)..49

Photo 9.4 South-dipping curvilinear contact between Huntington andesite (above) and mineralized rhyolite (below). Looking east close to the entrance to the Big Dog Stope. ...53
Photo 9.5 High-grade silver-copper bearing massive stockwork mineralization hosted by brecciated rhyolite, Big Dog Stope. The width of the photo is approximately 3.3 ft (1 m).

List of Tables

Table 1.1 Bayhorse Inferred Mineral Resource Estimate for silver at a variety of lower cut-off grades, the reported mineral resource is highlighted. ... 6
Table 4.1 Bayhorse property details...13
Table 9.1 Assay results for twenty one hand grab surface samples collected by one of the authors from the Bayhorse Silver Mine property, November 2013..48
Table 9.2 Descriptions And Locations For The Rock Grab Samples Collected By G.E. Ray in November 2013 (Ray, 2015). ...50
Table 9.3 Assay results for Ag, Cu and Zn from the Legend, Big Dog and raise leading to the Sunshine Stope..54
Table 9.4 Assay results for Au, Ag and Cu from the Sunshine, Big Dog and Legend Zones...54
Table 9.5 Precious and base metal assay results of samples collected from the Big Dog Stope. ..55
Table 9.6 Silver assay results of 26 channel samples taken from the westerly end of the main haulage way, Intermediate Level...56
Table 12.1 Confirmation samples collected by Mr. A. Turner, B.Sc., P.Geol., August, 2018..68
Table 13.1 Summary of 2014 Met-Solve floatation test work on Bayhorse mineralization.71
Table 13.2 Summary of 2016 Met-Solve Heavy Liquid Separation test work on Bayhorse mineralization..72
Table 14.1 Summary statistics for un-composited silver (opt) data constrained within the lode...80
Table 14.2 Sample length statistics for the Bayhorse Silver un-composited assay file.83
Table 14.3 Comparison of silver grade of raw un-composited grade versus the various composite sample files for the Bayhorse Silver composite analysis.83
Table 14.4 Bayhorse Silver summary statistics of Un-capped composited grades within the mineralized horizon...85
Table 14.5 Bayhorse Silver density measurements broken down by silver cut-off grade (opt). ...90
Table 14.6 Block model extents and cell dimensions for the Bayhorse Silver block model......90
Table 14.7 Bayhorse Silver volume comparison of lode wireframe versus block model.91
Table 14.8 Estimation and search ellipsoid criteria for the Bayhorse Silver resource calculation

Table 14.9 Calculated grade (0% lower cut-off) of model versus composited average sample grades by lode for the Bayhorse Silver estimation.

Table 14.10 Bayhorse Inferred Mineral Resource Estimate for silver at a variety of lower cut-off grades (the reported mineral resource is highlighted).

Table 17.1 Bayhorse Inferred Mineral Resource Estimate for silver at a variety of lower cut-off grades, the reported mineral resource is highlighted.

Table 18.1 Bayhorse Silver 2019 budget for recommended work.

List of Appendices

Appendix 1 List of Abbreviations, Units and Measurements
1.0 SUMMARY

Bayhorse Silver Inc., (“BHS”, “Bayhorse”, “Bayhorse Silver” or “the Company”) engaged APEX Geoscience Ltd. and Gerry E. Ray in May, 2018 to prepare this National Instrument (NI) 43-101 Technical Report on their Bayhorse Silver Property in eastern Oregon. This report, which is an update to an earlier Technical Report on the Property, completed by one of the co-authors (Ray, 2015), summarizes details of the active underground rehabilitation, exploration and sampling completed by the Company since 2015 along with the results of geological modeling work and a Maiden Inferred Mineral Resource Estimate for the Bayhorse Silver Deposit. The Bayhorse Silver Mine Property (“the Property”) currently comprises a package of four patented and eighteen unpatented lode mining claims which are now 100% owned by Bayhorse.

Silver mineralization at the Bayhorse Property is associated with veins, stringers and disseminations in rhyolite along and in close proximity to the Sunshine fault which is hosted in Late Triassic to Jurassic volcanics and sediments of the Weatherby and Huntington formations. The Bayhorse silver mineralization is associated with sulphides in veins, replacements and massive pods dominated by tetrahedrite-tennantite and other sulfosalts (Leitch, 2013) with sporadic sphalerite. Variable amounts of chalcopyrite, galena and minor pyrite are present together with possible acanthite (Ag$_2$S). Mineralization is associated with silicification, quartz stringers, carbonate and minor sericite and potassium feldspar (Leitch, 2013) as well as some chlorite-clay alteration.

On the 18th of December, 2013, Bayhorse Silver announced it had entered into a Letter of Agreement with American Cordilleran Mining Corporation whereby it acquired an Option, subject to the approval of the TSX Venture Exchange, to earn an 80% interest in the Bayhorse Silver Mine Property. On the 11th of January, 2018, Bayhorse further announced that it now controlled 100% ownership of the mine lease and Property having expended a sum of CDN$3,775,000 (USD$2,905,240) on the Property.

The Bayhorse Silver Property is located in Baker County, eastern Oregon, and lies approximately 7.5 miles (12 km) north of Huntington (population 440) and 34.2 miles (55 km) north-northwest of Ontario (population 11,500). It is situated on the steep western slope of the south-flowing Snake River, which in the late 1950’s was dammed to make the Brownlee Reservoir. The property is easily road accessible, with access from the town of Huntington by taking the Snake River road and driving 8.7 miles (14 km) northwards along the western side of the Snake River valley.

There are three historical underground workings, each of which has a portal; of these, only the two higher adits are currently open. These three workings comprise the Upper, the Intermediate (also known as the “84” because it was made accessible from surface during the 1983-84 Silver King episode of mining), and the Lower Levels. The two higher levels are accessible via portals that have recently been rehabilitated. All parts of the Lower Level are accessible, although the portal currently needs minor rehabilitation work therefore the workings are temporarily closed off. The Upper Level at 2,373 ft (723 m) above sea level elevation leads into the silver-rich Sunshine Stope while the Intermediate Level was opened to access the Big Dog Stope, which ranges in elevation from 2,350 to 2,405 ft (716 to 733 m) above sea level. Most of the underground workings are on patented ground and extend underground westward into the hillside for more than 1,000 ft.
Bayhorse recently completed a raise between the Intermediate and Upper Levels that acts as an escape route. During the raise construction the moderately mineralized Legend Zone was discovered.

Historical underground mining mainly took place in the 1920’s and 1980’s. Evidence of this work includes the three underground levels and the recently rehabilitated adits for the Intermediate and Upper Levels. The initial period of underground mining between 1920 and 1925 was operated by the U.S. Metal Company. Three areas were stoped and the mineralized rock was shipped to the Bunker Hill Smelter in Idaho and the Tacoma Smelter in Washington. Full (1959) states that a minimum of 5,059 tons (4,590 tonnes) was shipped from which 145,469 ounces of silver was produced at an average grade of 28.75 ounce per ton (oz/t or opt) (985.7 parts per million (ppm)) silver (Ag). However, the reader is cautioned that this production and grade data cannot be confirmed and therefore should not be relied upon.

In 1976 Cordex Exploration Co. completed an extensive exploration program that involved underground and surface geological mapping, geochemical sampling and drilling four diamond drill holes (Ibex #1 to Ibex #4; Wallace, 1976). At least 521 rock grab and channel samples representing various non-mineralized rock types and sulphide-bearing mineralized material were collected. Of these, a total of 34 samples collected mostly from underground contained significant amounts of silver, as well as sporadically high values of copper, zinc and lead. Silver values in the 34 mineralized samples generally ranged between 1 to 15 oz/t (34.3 to 514.3 ppm), although a few samples contained bonanza grades that yielded up to a maximum of 149.6 oz/t (5,129.1 ppm) silver. Based on these silver values, the geology and the extent of the mineralization Herdrick (1981) estimated a “probable tonnage of 166,208 tons (150,781.4 tonnes) grading 17 to 20 oz/t (582.9 to 685.7 ppm) Ag at a cut-off of 7.5 oz/t (257.1 ppm)”.

The reader is cautioned that Herdrick’s (1981) “probable tonnage” estimates predate National Instrument 43-101 and are not consistent with current CIM standards for mineral resource estimation (as defined by the CIM Definition Standards on Mineral Resources or Ore Reserves dated May 10, 2014). Herdrick’s (1981) historic estimates are based upon limited or unknown data and should not be relied upon.

Increased precious metal prices in the early 1980’s resulted in a renewed interest in the Bayhorse Silver Mine. In 1984 Silver King Mines, Inc. completed underground development west of the historic Big Dog Stope including bulk sampling, extensive underground drilling and channel sampling, and reportedly extracted 5,718 tons (5,187 tonnes) of mineralized rock grading 16.7 oz/t (572.6 ppm) silver (Wise, 1984). However, the reader is strongly cautioned that this production and grade data cannot be confirmed and verified, therefore it should not be relied upon.

The Property is largely underlain by Early to Mid-Jurassic rocks of the Weatherby Formation and Upper Triassic rocks of the Huntington Formation, which occupy the southern parts of the claim block. The Weatherby Formation is a meta-sedimentary package with wackes, conglomerates, siltstones, argillites, tuffs and some gypsum and anhydrite-bearing units. It was deposited in a shallow marine environment and was subjected to low grade zeolite-greenschist regional metamorphism that resulted in foliated schistose or phyllitic fabrics. The underlying Huntington Formation northerly-dipping rocks include shallow water carbonate facies rocks but are dominated by a volcanic package that ranges in composition from basalt to rhyolite, although andesites are...
most common. The mafic rocks include flows, ash tuffs, bedded tuffaceous sediments, volcanic wackes and conglomerates, as well as some coarse tuff breccias. The Huntington Formation is the main unit that hosts the Bayhorse Mine silver-bearing intrusive rhyolite.

The Weatherby and Huntington rocks are intruded by a suite of rhyolite sills and dikes. These are considered important since much of the silver-rich mineralization at the mine appears to be genetically and spatially related to a rhyolite sill. In addition to the Huntington and Weatherby rocks, the property includes a number of young narrow mafic dikes that may be related to the Miocene-age Columbia River Volcanic Group. Also locally present along the steep east facing slopes of the Snake River valley are several slumped areas with historic landslide debris.

The Bayhorse Silver Deposit, being at least spatially related to the intrusive rhyolite, is either syn- or post Weatherby in age and may have formed in an epithermal or sub-epithermal environment. The deposit has a strong structural control along the prominent Sunshine Thrust Fault. Mineralization is dominated by various sulfosalts, including tetrahedrite-tennantite, together with abundant pale colored, low Fe-bearing sphalerite and possibly acanthite (Leitch, 2013). In addition, there is chalcopyrite and covellite with minor galena and pyrite mineralization. Gangue minerals include quartz-silica and carbonate with minor sericite, potassium feldspar, chlorite and clay. Fracture-controlled copper (Cu) oxide mineralization as either malachite, azurite or black Cu-Manganese (Mn) wad is common in the vicinity of the Intermediate and Upper adits. Surface sulfosalts-sulphide mineralization is seen either in massive, 0.4 to 1.6 inch (1 to 4 cm) thick veins along rhyolite-andesite faulted contacts or as fracture-controlled replacements, veins and stockworks hosted by rhyolite.

Historical reports (Livingston, 1923; Anderson, 1923; Hershey, 1925) suggest that the underground mineralization occurs in a 40 to 80 ft (12 to 24 m) wide zone that dips steeply north, sub-parallel to the inclination of the rhyolite and Huntington volcanics. However, recent examinations of the rocks exposed in the Intermediate Level workings, including the Big Dog Stope (Ray, 2018), suggests the rhyolite in part dips southerly, which is in contrast to what is seen on the surface at a somewhat higher elevation. Surface mapping conducted by Bayhorse’s Chief Geologist Dr. Clay Conway shows a northerly dip direction in many of the surface rocks. The reason for the different dip directions is currently unknown, however, rocks seen along the Intermediate Level workings lie below the Sunshine Thrust while many of the surface exposures lie above this structure; this may account for the different dip directions.

As well as being south dipping, the rhyolite in the Big Dog Stope area appears to have been folded as its margins vary between 025 and 075 degrees in dip. In this area the rhyolite is not a planar slab but shows pinch and swell features and other irregularities; the cause of these irregularities is unknown, but may be due to folding, boudinage, thrust movement or are the result of irregular intrusion. It also appears to vary in its strike from east-west in its more easterly portion near the Intermediate Level Portal to west-southwest or southwest further to the west.

One of the authors (Ray, 2015) collected 15 surface rock grab samples containing visible sulfosalts and sulphides which were submitted to the certified ALS Chemex Laboratory in Elko, NV. Assay results showed that of the 15 hand samples collected with visible mineralization, 11 assayed >2.92 oz/t (100 ppm) Ag of which two contained >29.2 oz/t (1,000 ppm) Ag while another two samples from a 1.57 inch (4 cm) thick vein outcropping above the Intermediate Level portal yielded spectacular bonanza values of 88 kg and 150 kg silver per tonne, respectively (Ray,
Some of these bonanza grades raise the possibility that native silver may be present although this is unproven. The reader is cautioned that selective rock grab sample assay results may not be representative of the overall metal grades for the property or mineralized zones. However, they do demonstrate that the Bayhorse Property mineralization can yield impressive quantities of Ag, Cu, zinc (Zn) and lead (Pb), which is encouraging for further exploration in the project area. Other points noted by Ray (2015) from the assay results are: many of the Ag-rich samples contain significant amounts of Cu (maximum 17.8%), Pb (maximum 1.2%) and Zn (maximum 8.9%); gold (Au) values in these 15 samples were low (<0.006 oz/t (0.2 ppm)). However, more recent underground sampling by Bayhorse has recorded values up to 0.050 oz/t (1.7 ppm) which supports historic reports of up to 0.292 oz/t (10 ppm) Au being present at the mine site.

Bayhorse Silver’s ongoing exploration work has been aimed at finding silver ± base metal rich mineralization of sufficient grade and tonnage to support an underground mining operation. Work completed to date includes:

- In 2016 a road was built up to the Upper Level portal and the portal was re-opened and re-timbered.
- Rehabilitation of the Intermediate Level portal and parts of the existing tunnel, including stabilizing and bypassing areas with collapsed ground.
- Surface and underground geological mapping of the property (Conway et al., 2014) as well as a reconnaissance examination of on-strike rocks in Idaho east of the mine and the Brownlee Reservoir.
- Ongoing underground sampling by Dr. Clay Conway (with assaying).
- Underground surveying of most of the accessible Intermediate Level by Bill Willoughby together with a survey of the first 50 ft (15 m) of the Upper and Lower levels.
- Bill Willoughby supervised over 530 ft (162 m) of new development workings into unexplored areas where two new mineralized zones were intersected. Grab samples of blasted mine material from the Upper Level Sunshine Zone were collected and assayed.
- A safety escape raise was driven from the Intermediate Level to the Upper Level. During this work the mineralized Legend Zone was discovered.
- The purchase and installation of the German manufactured Steinert “ore sorter”, prior to which mineralized material from the 84 surface dump, the Legend Zone and parts of the Intermediate Level were shipped to the Steinert facility at Walton, Kentucky, for testing.
- After installation of the Steinert equipment, waste and mineralized material was put through to calibrate the machine.
- Mineralized material sorted by the Steinert was then submitted for off-site leaching.

In a recent news release (BHS208-23) dated the 16th of August 2018, Mr. Graeme O’Neill, Bayhorse Silver Inc., CEO announced that the Company had reopened the last of the historic 1984 mine workings at the extreme western end of the Bayhorse Silver Mine, over 700 ft (213 m) from the portal. In addition, 550 ft (168 m) of existing on-strike haulage-way was opened with approximately 1,500 ft (457 m) of drifts, raises and limited stopes. This work exposed a substantial amount of mineralized material that has been verified by the authors. The news release also reported that the recent assay sampling program revealed grades of up to 73 oz/t (2,502.9 ppm) Ag. The recent sampling supports the reported historic high grade silver assays, including those
selected grab sample bonanza grades of up to 150 kg silver per tonne reported by Ray (2015). The silver-rich mineralization is accompanied by significant grades of base metals.

The recent underground work has revealed a much clearer picture of the high grade mineralization deep inside the historic mine and has allowed the authors to properly place, rectify and utilize all the historic sampling results. In addition, sufficient access to the historic western workings at the Intermediate Level has allowed confirmatory sampling of these workings to be conducted by Bayhorse and the authors of this report.

The 16th of August, 2018, news release reported the results of the Company’s recent grab and chip sampling from the Big Dog Zone at the eastern end of the newly opened 550 ft (168 m) portion. Six of seven chip and grab samples yielded between 19.5 oz/t (668.6 ppm) Ag and 73.0 oz/t (2,502.9 ppm) Ag. In addition, these samples assayed up to 6.0% Cu, 2.19% Zn and 3.07% Pb. However, the reader is cautioned that these chip and grab samples were hand selected and are not necessarily representative of the true grade of the entire mineralized zone. However, samples collected by the authors have confirmed these results.

Based upon the results of the data compilation, surveying and new access with sampling, the authors have been able to model the current understanding of the mineralization envelope for the Bayhorse Deposit. The Bayhorse resource has been estimated within three dimensional solids that were created from cross-sectional lode interpretation. The eastern end of the mineralization lode has been cut by topography. Grade was estimated into a block model with parent block size of 4 m (X) by 4 m (Y) by 4 m (Z) (4 m = 13.12 ft) and sub-blocked down to 1 m (X) by 1 m (Y) by 1 m (Z) (1 m = 3.28 ft). A total of 29 bulk density samples were available for review. The 29 bulk density samples were examined with respect to the silver cut-off grade with the aim of providing an accurate reflection of the expected resource tonnage. The density measurements range from 2.42 g/cm3 to 3.39 g/cm3. The assigned value of 2.80 g/cm3 was determined relative to a conservative lower cut-off grade of 2.5 opt (85.7 ppm) Ag and was based on 21 density measurements from samples collected in and around areas of higher grade silver mineralization. Grade estimation of silver was performed using the Inverse Distance Squared (ID2) methodology and verified using Ordinary Kriging. The Inferred Mineral Resources are constrained within an interpreted geological lode representing primarily altered and mineralized rhyolite along a variably south dipping ‘horse fault’ structure within or at the contact of the generally flat-lying Sunshine Thrust Fault system. The mineralization lodes have overall dimensions of approximately 800 ft (245 m) along strike east-west, 200 ft (60 m) across strike and 23 ft (7 m) in thickness.

The Maiden Bayhorse Silver Inferred Mineral Resource Estimate is reported at a range of silver cut-off grades in Table 1.1. No portion of the current mineral resource has been assigned to the “Indicated” or “Measured” categories. The resource, using a cut-off grade of 7.5 opt (257.1 ppm) Ag, comprises an Inferred Mineral Resource of 292,300 tons at 21.65 opt (742.5 ppm) Ag. The base case cut-off of 7.5 opt (257.1 ppm) Ag is highlighted in the table below. Other cut-off grades are presented for review ranging from 0 to 12.5 opt (428.6 ppm) Ag for sensitivity analyses.

The Bayhorse Silver Inferred Mineral Resource Estimate is reported in accordance with the Canadian Securities Administrators NI 43-101 rules and has been estimated in accordance with the CIM “Estimation of Mineral Resources and Mineral Reserves Best Practice Guidelines” dated November 23rd, 2003 and CIM “Definition Standards for Mineral Resources and Mineral Reserves” dated May 10th, 2014. The classification of the mineral resources was based on
geological confidence, data quality and grade continuity. The inferred mineral resource is reported at a lower cut-off of 7.5 opt (257.1 ppm) Ag, which represents expected underground costs associated with a potential block and cave (stoping) mining scenario for the purposes of the potential for future economic extraction.

Table 1.1 Bayhorse Inferred Mineral Resource Estimate for silver at a variety of lower cut-off grades, the reported mineral resource is highlighted.

<table>
<thead>
<tr>
<th>Classification</th>
<th>Cut-off Grade (opt Ag)**</th>
<th>Tonnage (short tons)</th>
<th>Ag Grade (opt)</th>
<th>Ag Grade (ppm)</th>
<th>Contained Ag*** (troy oz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inferred *</td>
<td>0</td>
<td>312,800</td>
<td>20.51</td>
<td>703.3</td>
<td>6,417,300</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>305,800</td>
<td>20.94</td>
<td>718.1</td>
<td>6,404,100</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>301,700</td>
<td>21.18</td>
<td>726.0</td>
<td>6,388,900</td>
</tr>
<tr>
<td></td>
<td>7.5</td>
<td>292,300</td>
<td>21.65</td>
<td>742.4</td>
<td>6,328,400</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>275,500</td>
<td>22.43</td>
<td>769.0</td>
<td>6,178,100</td>
</tr>
<tr>
<td></td>
<td>12.5</td>
<td>253,700</td>
<td>23.39</td>
<td>801.9</td>
<td>5,934,000</td>
</tr>
</tbody>
</table>

* Inferred mineral resources are not mineral reserves. Mineral resources, which are not mineral reserves, do not have demonstrated economic viability. There has been insufficient exploration to allow for the classification of the inferred resources tabulated as an indicated or measured mineral resource, however, it is reasonably expected that the majority of the inferred mineral resources could be upgraded to indicated mineral resources with continued exploration. There is no guarantee that any part of the mineral resources discussed herein will be converted into a mineral reserve in the future. The estimate of mineral resources may be materially affected by environmental, permitting, legal, marketing or other relevant issues.

** A price of $15 (U.S.)/ounce silver with a conceptual underground mining and processing cost of $100 (U.S.)/ton has been utilized to derive the favoured lower cut-off for Ag of 7.5 oz/t.

*** Grade in parts per million and contained ounces may not add due to rounding.

The past expenditures between 2015 and March 31, 2018 as provided by Bayhorse Silver for work at the Bayhorse Property are estimated to be CDN$4.2 million (USD$3,232,320) including capital costs. The estimated expenditures for the April 1, 2018 to the end of the year on the order of CDN$1.5 million (USD$1,154,400).

Examinations of the Intermediate Level workings recently completed by three of the co-authors of this report show that both the mineralized rhyolite and the barren andesitic country rocks have been strongly affected by complex, multi-phase deformation that includes brittle thrusting and faulting, as well as possibly some folding and boudinage. Significant unmined silver +/- base metal mineralization has been identified associated with the deformed Sunshine Fault Zone above, and to the west, of the newly built intermediate level access. Based upon the authors observations and the compiled results of historic channel sampling and drilling, historic mining, the state of the current development, and recent sampling and identification of an Inferred Mineral Resource, the authors recommend an exploration program consisting of further underground development, rehabilitation, drilling of about 15,000 ft (4,572 m) and the collection of a bulk sample on the order of approximately 10,000 tons should be completed during 2019. Additional work including but not limited to underground surveying and geological mapping, additional metallurgical work, additional resource and economic studies should be completed. The recommended budget for this work for 2019 including contingencies is CDN$3.85 million (USD$2.96 million).
2.0 INTRODUCTION

Bayhorse Silver Inc., (“BHS”, “Bayhorse”, “Bayhorse Silver” or “the Company”) engaged APEX Geoscience Ltd. (APEX) and Gerry E. Ray in May, 2018 to prepare this National Instrument (NI) 43-101 Technical Report on their Bayhorse Silver Mine Property in eastern Oregon (Figure 2.1). This report, which is an update to an earlier Technical Report on the Property completed by one of the co-authors (Ray, 2015) summarizes details of the underground rehabilitation, exploration and sampling completed by the Company since 2015, along with the results of geological modeling work and a Maiden Mineral Resource Estimate for the Bayhorse Silver Deposit. All data discussed in this report was provided to the authors by Bayhorse personnel including the President and Chief Executive Officer (CEO) Mr. Graeme O’Neill, Chief Geologist Dr. Clay Conway, P.Geol. and Mr. Rick Low, Chartered Professional Accountant (CA).

Silver (Ag) mineralization at the Bayhorse Property (“the Property”) is associated with veins, stringers and disseminations in rhyolite along and in close proximity to the Sunshine Thrust Fault which is hosted in Late Triassic to Jurassic volcanics and sediments of the Weatherby and Huntington formations. The Bayhorse silver mineralization is associated with sulphides in veins, replacements and massive pods dominated by tetrahedrite-tennantite and other sulfosalts (Leitch, 2013) with abundant sphalerite. Variable amounts of chalcopyrite, galena and minor pyrite are present together with possible acanthite (Ag$_2$S). Mineralization is associated with silicification, quartz stringers, carbonate and minor sericite and potassium feldspar (Leitch, 2013) as well as some chlorite-clay alteration.

The Bayhorse Property is road accessible and lies approximately 7.5 miles (12 km) north of Huntington (population 440) in Baker County, Oregon and is situated on the steep western slopes of the Snake River (Figure 2.1; Photo 2.1). The Bayhorse Property comprises 4 patented and 18 unpatented lode mining claims totaling 140.65 hectares (347.6 acres) in area. The high-grade silver-bearing mineralization that comprises the Bayhorse Deposit was mined during the 1920’s and 1980’s; remnants and expansion of this early underground mining infrastructure is the primary focus of Bayhorse Silver’s current exploration program. Bayhorse has constructed a new main access tunnel (partly rehabilitated old access and new access) of 836 ft (255 m) beneath the main mineralized zone in order to access the historical workings and main mineralized rhyolite and evaluate the economic potential of the remaining silver-rich mineralization comprising the Bayhorse Deposit.

Co-author Dr. Gerald Ray. Ph.D., P.Geo., a Qualified Person, has assembled much of the technical data regarding the property, geology, mineralization, sampling and assays and is responsible for the preparation of all sections of this report, except for Section 14. APEX Principals and co-authors, Mr. Andrew Turner, B.Sc., P.Geol. and Mr. Michael Dufresne, M.Sc., P.Geol., P.Geo., both Qualified Persons, have made contributions to and supervised the preparation and content of all sections of this Technical Report. Coauthor Mr. Steven Nicholls, BA.Sc. MAIG, Senior Resource Geologist with APEX, is responsible for the completion of Section 14 of this report, which provides the results of geological modeling and the estimation of a Maiden Mineral Resource for the Bayhorse Silver Deposit.

The co-authors Dr. Ray, Mr. Turner and Mr. Dufresne have visited the Property on several occasions. Dr. Ray and Mr. Dufresne visited the Property on the 22nd and 23rd of June 2018 when
they were accompanied by Bayhorse CEO Mr. Graeme O’Neill, Chief Geologist Clay Conway and Operations Manager Mr. Levi Duncan. Later, Mr. Turner visited the Property on the 15th and 16th of August and Dr. Ray visited the project on the 28th and 29th of September. Both of these visits were conducted after the ongoing underground development by the Company completed a breakthrough into the historic Intermediate Level workings within the mine, including the historic Big Dog Stope, thus allowing for their examination and direct confirmation sampling, (Ray, 2018). During the June property visit, the co-authors entered new and recently rehabilitated parts of the Intermediate and Upper Levels and examined the accessible underground geology and mineralization, including that in the newly discovered Legend Zone.

\textbf{Figure 2.1 Location of the Bayhorse Property, eastern Oregon, USA.}

The rock types seen on the property include meta-sedimentary schists of the Early to Mid-Jurassic Weatherby Formation. These are disconformably underlain by the Carnian to Norian (Late Triassic) Huntington Formation. At the mine site, the latter includes abundant volcanic tuffs,
tuffaceous sediments, conglomerates and minor flows, largely of basalt-andesite composition. Most of the fragmental rocks are monomictic although some clasts of rhyolite are present. Also present is a suite of rhyolite intrusive dikes and sills that intrude both the Weatherby and Huntington packages (Conway, personal communication 2018). The silver-rich mineralization is spatially and probably genetically related to the rhyolite suite.

Photo 2.1: View looking southeast from the Upper Adit at UTM 0482517E-4921978N showing the road leading to the Intermediate Level Adit (out of sight to the right) and the large enclosure that shelters the Steinert ore sorter.

*Note: the Brownlee Reservoir (Snake River) and beyond the hills in Idaho.

Historical reports (Livingston, 1923; Anderson, 1923; Hershey, 1925) indicate that the underground mineralization occurs in a 40 to 80 ft wide (12 to 24 m wide) zone that dips steeply north, sub-parallel to the contact between the rhyolite sill and the Huntington volcanics. However, underground and surface mapping (Conway et al., 2014: Conway, personal communication, 2018; Ray, 2018) shows that much of the remaining significant mineralization occurs within the imbricate, shallow west dipping Sunshine Thrust Fault. Thus, it is possible that additional mineralization may be found both further west along the thrust as well as on strike and down dip within the rhyolite or along its contact with the Huntington andesites.

Assay results (Ray, 2015) and more recent work supports historic reports that the mineralization is silver-rich with significant amounts of copper and zinc and these precious and base metals are the main focus of Bayhorse Silver’s current Property evaluation work. Although it has seen historical production, the recent work by Bayhorse Silver represents the first significant
technical report maiden resource bayhorse silver property

exploration/development work completed at the Property since the mid-1980s. As a result, the Bayhorse Property is considered to be at an early stage of exploration and development.

In addition to field observations made by the authors, this report includes information that was obtained from published documents as listed in the Reference section (Section 18). This report also incorporates information from various unpublished sources such as maps, reports and verbal communications provided by Mr. Graeme O'Neill (CEO Bayhorse Silver), Chief Exploration Geologist Dr. Clay Conway, P.Geol., and Mr. Rick Low, CA. Important recent conclusions by Dr. Clay Conway regarding the geology and the structural controls of the sulphide mineralization are included in Section 7.2 (Property Geology). The authors of this report have verified and confirmed the information obtained from Bayhorse and from Dr. Conway and, where appropriate, have utilized this information in their interpretations and conclusions.

Because the Bayhorse Project is located in the United States, the majority of the historical and recent reports and documents pertaining to the Property include dominantly Imperial units of measurement (Appendix 1). Where such units are discussed in this report an effort has been made to also provide the equivalent metric conversion. Analytical results are stated in percentage (%), parts per million (ppm), grams per metric tonne (g/t), ounces per ton (oz/ton, oz/st or opt), kilograms per tonne (kg/t) or parts per billion (ppb). Distances are in imperial feet (ft) and miles or centimeters (cm), meters (m) and kilometers (km). Area sizes are given in acres, hectares or square kilometers. Metric weight units include tonnes (T), kilograms (kg), and grams (g) while Imperial weight units are given in short tons (t). The conversion of ‘opt’ values to ‘ppm’ (or g/t) values utilized the conversion 1 opt = 34.2857 g/t. Element abbreviations include Au (gold), Ag (silver), Cu (copper), Pb (lead), Zn (zinc), Bi (bismuth) As (arsenic), Mo (molybdenum), Sb (antimony), W (tungsten), Sn (tin), Hg (mercury), and Cd (cadmium).

This Technical Report is a compilation of proprietary and publicly available information. In writing this report, the authors have not relied upon the opinions or conclusions of any other experts. The current and historical exploration data and documents utilized and discussed in this report were obtained from the Company. This included a review of previous (historical) reports and exploration and development data, as well as all recent (Bayhorse) exploration data. These and other sources of information are reviewed in sections 6 and 7 of this report and are listed in the reference section 18 of this report. The authors, in writing this Report, have used sources of information from current previous explorers, which appear to have been completed in a manner consistent with normal exploration practices. The supporting documents, which were used as background information are referenced in the ‘History’, ‘Geological Setting and Mineralization’, ‘Deposit Types’, ‘Adjacent Properties’ and ‘References’ sections. The authors, based upon their respective property visits and expertise, are of the opinion that the work performed to date is appropriate for the target type and is substantially accurate.

The geographic coordinates quoted in this report reference the Universal Transverse Mercator (UTM) system. All coordinates, unless otherwise specified, are in metres relative to zone 11 of the 1983 datum. Hand-held GPS units were used to confirm the location of surface samples and surface features. The patented claims comprising the Bayhorse Property will have been surveyed prior to their conversion to patents. The unpatented claims comprising the Property have not been legally surveyed. The extents of the recent underground development constructed by Bayhorse along with accessible historic portions of the underground have been surveyed by Bill Willoughby, consulting Mining Engineer.

Date: November 1, 2018

APEX Geoscience Ltd.
3.0 RELIANCE ON OTHER EXPERTS

The authors of this report are not qualified to provide a formal Title Opinion with respect to the mineral claims that comprise the Bayhorse Property. As a result, this Technical Report incorporates and, on occasion, relies upon contributions from Bayhorse Silver personnel with respect to Property details, including surface and subsurface mineral ownership information, agreements, permitting and environmental status, which are discussed in the following section of this report. That being said, the authors have confirmed, to the extent possible, the ownership and active status of the unpatented BLM lode mining claims (BLM LR2000 online database) and the patented mining claims (Baker County Clerk) comprising the Property. The opinions provided on surface and subsurface mineral ownership, along with royalty information, are current as of the October 15, 2018 and with all 18 unpatented lode mining claims found to be active and in good standing and registered in the name of Bayhorse LLC. The active status of the unpatented BLM lode mining claims was confirmed utilizing the BLM LR2000 database on October 15, 2018. In addition, the status of the patented claims within the Property was also confirmed with the Baker County Clerk on October 15, 2018.

The authors were informed by the Company that it has paid all taxes for the Bayhorse Property and that no other taxes, duties, fees or environmental liabilities as discussed in the following section below are due or exist at this time (Pers Comm., O’Neill and Low, October 15, 2018). Furthermore, Bayhorse does not have any current or pending litigation that may be material to the Bayhorse Mine Property assets (Pers Comm., O’Neill and Low, October 15, 2018). The authors have also been informed that no First Nations or private land concerns exist and that the current work is being conducted on “Patented Ground” as defined by the 1872 Mining Law (Pers Comm., O’Neill, October 15, 2018). In 2015, the Oregon Department of Geology and Mineral Industries changed the permitting process, on which the Company applied for an “exemption permit” which was granted at the beginning of 2018 (Pers Comm., O’Neill, October 15, 2018).

4.0 PROPERTY DESCRIPTION AND LOCATION

4.1 Property Location

The Bayhorse Property is located in Baker County in eastern Oregon and is roughly centered at UTM 482532E/4921935N (NAD 1983, Zone 11) or 44°27’02”N/ 117°13’11” (latitude/longitude) on the steep western slope of the south-flowing Snake River (Figure 4.1; Photo 2.1). The Property lies approximately 7.5 miles (12 km) north of Huntington, OR (population 440) and 34 miles (55 km) north-northwest of Ontario, OR (population 11,500), and approximately 78 miles (125 km) northwest of Boise, ID, the nearest large city (metro area population 710,000) with regularly scheduled flight services.
Figure 4.1 Bayhorse Silver Mine Property claim map.
4.2 Property Description

The Bayhorse property currently comprises a package of four (4) patented and eighteen (18) unpatented lode mining claims (Table 4.1). In a news release dated the 11th of January, 2018 (Bayhorse, 2018), Bayhorse announced that it now holds a 100% ownership of the mine lease comprising the Property. The total area of the Property is 140.65 hectares (347.6 acres).

All of the unpatented (BLM) claims are valid until August 31st, 2019 (Table 4.1). The three adits and most of the three levels of underground workings are on (and beneath) patented claims. The workings extend underground for more than 900 feet westward into the hillside. The portals at the higher two levels have been rehabilitated but the Lower Level portal remains closed.

<table>
<thead>
<tr>
<th>Claim Name</th>
<th>Mineral Survey #</th>
<th>Type</th>
<th>Area (ha)</th>
<th>Anniversary Date</th>
<th>Registered Owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rapid</td>
<td>300 Patent</td>
<td></td>
<td>1.253</td>
<td>-</td>
<td>Bayhorse LLC</td>
</tr>
<tr>
<td>Bay Horse</td>
<td>133 Patent</td>
<td></td>
<td>7.084</td>
<td>-</td>
<td>Bayhorse LLC</td>
</tr>
<tr>
<td>O.K.</td>
<td>301 Patent</td>
<td></td>
<td>8.07</td>
<td>-</td>
<td>Bayhorse LLC</td>
</tr>
<tr>
<td>Snow Storm</td>
<td>301 Patent</td>
<td></td>
<td>7.09</td>
<td>-</td>
<td>Bayhorse LLC</td>
</tr>
<tr>
<td>BH01</td>
<td>- BLM Claim</td>
<td></td>
<td>7.811</td>
<td>31-Aug-19</td>
<td>Bayhorse LLC</td>
</tr>
<tr>
<td>BH02</td>
<td>- BLM Claim</td>
<td></td>
<td>8.582</td>
<td>31-Aug-19</td>
<td>Bayhorse LLC</td>
</tr>
<tr>
<td>BH04</td>
<td>- BLM Claim</td>
<td></td>
<td>8.503</td>
<td>31-Aug-19</td>
<td>Bayhorse LLC</td>
</tr>
<tr>
<td>BH05</td>
<td>- BLM Claim</td>
<td></td>
<td>8.334</td>
<td>31-Aug-19</td>
<td>Bayhorse LLC</td>
</tr>
<tr>
<td>BH07</td>
<td>- BLM Claim</td>
<td></td>
<td>6.505</td>
<td>31-Aug-19</td>
<td>Bayhorse LLC</td>
</tr>
<tr>
<td>BH09</td>
<td>- BLM Claim</td>
<td></td>
<td>5.829</td>
<td>31-Aug-19</td>
<td>Bayhorse LLC</td>
</tr>
<tr>
<td>BH11</td>
<td>- BLM Claim</td>
<td></td>
<td>7.781</td>
<td>31-Aug-19</td>
<td>Bayhorse LLC</td>
</tr>
<tr>
<td>BH13</td>
<td>- BLM Claim</td>
<td></td>
<td>7.012</td>
<td>31-Aug-19</td>
<td>Bayhorse LLC</td>
</tr>
<tr>
<td>BH14</td>
<td>- BLM Claim</td>
<td></td>
<td>0.1777</td>
<td>31-Aug-19</td>
<td>Bayhorse LLC</td>
</tr>
<tr>
<td>BH16</td>
<td>- BLM Claim</td>
<td></td>
<td>1.483</td>
<td>31-Aug-19</td>
<td>Bayhorse LLC</td>
</tr>
<tr>
<td>BH17</td>
<td>- BLM Claim</td>
<td></td>
<td>6.857</td>
<td>31-Aug-19</td>
<td>Bayhorse LLC</td>
</tr>
<tr>
<td>BH18</td>
<td>- BLM Claim</td>
<td></td>
<td>8.353</td>
<td>31-Aug-19</td>
<td>Bayhorse LLC</td>
</tr>
<tr>
<td>BH19</td>
<td>- BLM Claim</td>
<td></td>
<td>7.152</td>
<td>31-Aug-19</td>
<td>Bayhorse LLC</td>
</tr>
<tr>
<td>BH20</td>
<td>- BLM Claim</td>
<td></td>
<td>8.353</td>
<td>31-Aug-19</td>
<td>Bayhorse LLC</td>
</tr>
<tr>
<td>BH37</td>
<td>- BLM Claim</td>
<td></td>
<td>3.263</td>
<td>31-Aug-19</td>
<td>Bayhorse LLC</td>
</tr>
<tr>
<td>BH38</td>
<td>- BLM Claim</td>
<td></td>
<td>8.343</td>
<td>31-Aug-19</td>
<td>Bayhorse LLC</td>
</tr>
<tr>
<td>BH39</td>
<td>- BLM Claim</td>
<td></td>
<td>4.893</td>
<td>31-Aug-19</td>
<td>Bayhorse LLC</td>
</tr>
<tr>
<td>BH40</td>
<td>- BLM Claim</td>
<td></td>
<td>7.919</td>
<td>31-Aug-19</td>
<td>Bayhorse LLC</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>140.65</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.3 Agreements, Interests and Royalties

In November 2013, Bayhorse Silver Inc. (then Kent Exploration Inc. – “Kent”) announced the signing of a ‘Letter of Intent’ with respect to an Option Agreement regarding the Bayhorse Mine Property (Bayhorse, 2013). On December 4, 2013 Bayhorse (Kent) entered into an Option Agreement with American Mining Corporation (AMCOR) with respect to the Bayhorse Mine Property, then comprising 3 patented claims and 10 unpatented BLM lode claims totaling approximately 250 acres or 101 ha. The Option Agreement specified that Bayhorse Silver Inc. had been granted an option to earn an 80% interest in the (100%) “Leasehold” (the “Mining
Lease”) that AMCOR had previously acquired from the registered owner of the Property, Bayhorse Silver Mine, LLC (Bayhorse LLC), which is a Nevada registered company and completely independent of Bayhorse Silver Inc., for which this report has been written. The terms of the agreement required cash payments from Kent (Bayhorse Silver Inc.) to AMCOR of US$25,000 (CDN$32,465) upon execution of the agreement, the issuing of a total of 1.5 million shares (of Kent) to AMCOR and work expenditures that totaled US$1.5 million (CDN$1,947,900) over a five-year period.

On May 18, 2017 Bayhorse Silver announced that it had satisfied the payment, share and expenditure requirements of the Bayhorse Property Option Agreement thus earning an 80% interest in the Property (Bayhorse, 2017). The May 2017 news release also stated that an 80:20 (Bayhorse:AMCOR) Joint Venture had been created to advance the Bayhorse Property. In January of this year (2018), Bayhorse announced that it had spent a further US$2.175 million (CDN$2,824,455) on the Bayhorse Property and that AMCOR had declined to contribute to the Joint Venture and had accepted dilution below 10% (Bayhorse, 2018). Under the provisions of the original Joint Venture Agreement, this automatically triggered the deemed interest in the Property of the participating party (Bayhorse Silver Inc.) to increase to 100% with the non-participating party (AMCOR) retaining a 1% Net Smelter Return (NSR).

As per an amendment to the original 2013 Lease Option Agreement, Bayhorse LLC, the underlying Property owner, retains a variable NSR that is set at 2% if the value of the ore produced is <US$500/ton. The NSR increases to 3% if the value of ore produced is >US$500/ton. In addition, Bayhorse LLC, is to be paid annual “Advance Royalty” payments that are currently at their maximum value of US$50,000 and are due within 10 days of the current anniversary date, which is June 4. To date, Bayhorse has paid a total of US$140,000 in Advance Royalty Payments to Bayhorse LLC but currently owes US$50,000 representing the 2018 payment. The underlying Lease Agreement remains in effect.

The Bayhorse property now consists of 4 patented lode mining claims and 18 unpatented lode mining claims totaling approximately 140.65 hectares (347.6 acres). The Bayhorse LLC property deed describes “the O.K. Consolidated Quartz Lode Mining Claim” as comprising, under a single survey (#301), both the O.K. and the Snow Storm individual patented claims, which along with the Rapid and Bayhorse claims comprise the patented claim portion of the Property (Figure 4.1 and Table 4.1). Not including the annual Advance Royalty payment discussed above, the current annual holding cost for the claims comprising the Property is US$2,330, which comprises approximately US$160 in county taxes due on the patented claims and an annual payment to the BLM of US$2,170 for the annual fees for the unpatented claims.

The authors have been informed by the Company that to the best of their knowledge there are no First Nation claims or other private land concerns with respect to any part of the Bayhorse Mine Property (Pers Comm., O’Neill and Low, October 15, 2018).

The Property is easily road accessible via a county road from Huntington. There is electrical power at the property boundary, approximately 500 ft (152.4 m) from the three portals. The closest airport with regularly scheduled service is approximately 99 miles (160 km) away by road at Boise, ID. The current Bayhorse Silver Mine infrastructure includes a small mine office, several equipment containers and a shed containing the Steinert ore sorter, which are all located on historical mine waste rock dumps adjacent to the Intermediate Level portal. There are no tailings on the Property.
and no evidence of any significant environmental liabilities. Currently, there are no known risk factors that would impede access to the property or the ability of Bayhorse Silver Inc. to conduct further exploration and development work at the Property.

4.4 Permitting

The following section summarises information regarding operating permits for the Bayhorse project that was provided by Bayhorse Silver Inc. Historical mining and current underground development work, and all surface ‘disturbances’, at the Bayhorse Property are contained within the “Bayhorse” patented claim. As a result, permitting requirements are limited. Furthermore, the company currently has no plans to conduct surface exploration activities on any of the BLM claims comprising the Property, which would require land use permitting.

At present, Bayhorse Silver Inc. is permitted to conduct underground development work and bulk sampling under an exemption issued by the Oregon Department of Geology and Mineral Industries, which is provided within Division 35 of Chapter 632 of the Oregon Mined Land Reclamation Act. The exemption is for small “producers” and is valid as long as total annual production, which is defined in the case of the Bayhorse Property as “materials” leaving the Property, of <5,000 cubic yards, which is suitable for current requirements. Additional permitting would be required in the future if the annual production from the Property is projected to exceed this quantity.

In addition to the Oregon Department of Geology and Mineral Industries, Bayhorse remains in contact with the Oregon DEQ (Department of Environmental Quality) who are monitoring the site but do not require permitting due to fact that the current and planned development activities at the Property will not require significant amounts of water for material processing and thus will not require a water permit for operations.

5.0 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY

The Property, which is located in eastern Oregon immediately adjacent to the border with western Idaho (Figures 2.1 and 4.1), is road accessible. Access from the town of Huntington (UTM 478697E-4910937N) can be made by taking the Snake River road and driving approximately 9 miles (14 km) northwards along the western side of the Snake River valley. The first ~3.7 miles (6 km) of this road is paved but the remaining 5 miles (8 km) to the Property is unpaved (gravel) but suitable for two-wheel drive vehicles. At UTM 482584E-4922336N there is a four-wheel drive track that leads up-slope to the south from the Snake River road toward the Bayhorse Mine. On this track, close to its junction with the Snake River road there is a locked gate. The Intermediate Level adit (Photo 5.1) and current Bayhorse infrastructure is located approximately 1400 ft (420 m) south of the turn off from the Snake River Road at UTM 482532E-4921935N. An electrical power line lies at the property boundary.
The Bayhorse Mine area has a semi-desert climate with hot summers and cool to cold winters. December to February has the lowest night-time temperatures that average between 20 and 25°F (approx. -5°C) while during the summer months temperatures reach between 75 and 96-degrees F (approx. 25-35°C). Precipitation is low - between December and February there may be 0.4 to 1.6 inches (1 to 4 cm) of snowfall. Trees are generally absent and the main vegetation comprises grasses, shrubs and low sage bush. Locally the topography is steep (Photo 2.1) and ranges from 2130 to over 3280 ft (650 to 1000 m) above seal level (asl) in elevation. Although parts of the property have steep terrain, all areas are accessible by foot. Work can be performed at the Property throughout the year.

The property, which totals approximately 140.65 hectares (347.6 acres), is large enough to accommodate all aspects of an underground mining operation, including areas for potential tailings storage, waste disposal and processing plants.

6.0 HISTORY

While it is known that historical mining has taken place at the Bayhorse Property, there are no reliable records available that can be easily verified in order to discuss detailed historical mine production figures. The earliest references to mining activity date back to the 1880’s when prospecting and some small-scale surface mining occurred and Lindgren (1901) reported that Bayhorse was “credited with a small silver production in 1891”. The majority of the historic mining at the Property occurred in the 1920’s and 1980’s. Surface evidence of historic exploration and mining on the Property includes:
1) Three adits: the “Upper”, “Intermediate” and the “Lower”. These are located respectively at UTM’s 482517E-4921978N, 482532E-4921935N and 482567E-4921999N (Photos 6.1, 6.2, Figure 6.1). Timbered workings mark the entrances to the westerly-driven tunnels. The Intermediate is also known as the “84 adit” as it was put in during the 1983-1984 phase of mining. Prior to this time the Intermediate Level workings were only accessible via the underground Upper and Lower tunnels. All three adits are timbered but the Lower adit needs minor renovation and is temporarily closed although all parts of its workings are accessible. In addition, a number of small un-timbered declines, tunnels and excavated pits are present on the Property (e.g. UTM’s 482490E-4921926N and 482431E-4921908N).

2) Two large bulldozed trenches up to 82 ft (25 m) long, 13 ft (4 m) deep and over 39 ft (12 m) in width are seen at UTM 482306E-4921749N and UTM 482388E-4921718N. These trenches did not reach bedrock but were excavated during historic exploration for gypsum (Clay Conway personal communication, 2014).

The initial period of underground mining took place from 1920 to 1925 under the direction of the U.S. Metal Company (USMC). Reports describing this early phase of mining include those by Magney (1921a, 1921b), Anderson (1923), Fellows (1923), Hershey (1925), Full (1959) and an un-dated report by Thomson. Shenon (1924) completed a University of Idaho M.Sc. thesis on the geology and metallurgy, which concluded that the Bayhorse mineralization was best suited to flotation concentration.

From historical reports it was determined that the upper tunnel was approximately 535 ft (~160 m) in length and that the lower tunnel was approximately 900 ft (~275 m) in length. At that time, the Intermediate Level workings were only accessible via winzes and raises from the Upper and Lower Levels. However, during the early 1980’s mining operation, surface access to the middle workings became possible with the construction of the Intermediate Level portal by Silver King Mines Inc. (Photo 6.2). The Intermediate Level and western workings developed by Silver King are now known to have extended approximately 900 ft (~275) in length as well.

During the 1920s, parts of the three tunnels were stoped and the mineralized rock was shipped largely to the Bunker Hill smelter, Idaho, but also to the Tacoma smelter in Washington. Details of the USMC ore production at that time are given by Wagner (1957) and Full (1959); the latter states that a minimum of 5,059 tons was shipped from which 145,469 ounces of silver was produced at an average grade of 28.75 oz/ton (985.7 ppm) silver. The reader is cautioned that these production figures are historical and are included for discussion and completeness and no implications with respect to remaining resources are intended. See Figure 6.1 for a map of the Bayhorse Mine historic underground workings.
Photo 6.1 Newly reopened and renovated Upper Adit located at UTM 0482517E-4921978N.

Prior to its re-discovery the original adit was entirely hidden by slumped rock debris and what is now known to be the Intermediate Adit was incorrectly named the “Upper Adit” (Ray 2015).

Photo 6.2 The Intermediate Level portal as it was in 2013. The massive rhyolite sill overlies darker tuffaceous Huntington Formation rocks.

The sharp contact between the two immediately above the portal entrance marks the undulating Sunshine Thrust Fault which dips gently westwards into the hillside. Along the contact immediately above and right of the portal is a 1-4 cm thick vein with bonanza grade silver (Ray, 2015), UTM 482532E-4921935N.
There are no records of any significant production at the Bayhorse Mine from 1925 until the early 1970’s, although during that time a number of companies did conduct some sampling, sporadic small-scale mining and exploration activities. Exploration activities are similarly poorly documented and there are no records of any geophysical studies or drilling being completed. In 1939 the Eastern Oregon News reported renewed activity at the mine with plans to install a 60 ton mill. Jacobson (1959) states production up to this date of 286,000 ounces of silver from 8,300 tons mined. In 1958 the Snake River was dammed and the Brownlee Reservoir completed. By 1959 the water had risen 90 feet (27.4 m) above the original river level. The owners, U. S. Metals, Inc., were concerned that the 90-foot rise had damaged their Bayhorse property; the rail line along the river was lost, a potential mill-site was submerged and the rise in water reduced the area for a waste and stockpile dump. Mining engineer Jacobsen (1959) was contracted to evaluate the effects of the rising water. He concluded there was some damage to the Bayhorse claims and to a nearby gypsum property.

Full (1959) completed surface and underground geologic mapping. He made estimates of the capacity for a dump-site downslope from the adits, and evaluated the mining potential of the
property. He believed there was ample room for a dump, but was concerned about the mine’s uncertain “ore reserve potential”, in contradiction to virtually all former reports.

On the 10th of June 2014 Bayhorse Silver Inc., announced in its news release (Bayhorse, 2016) that they had acquired copies of all the Bayhorse Mine data previously held by Cordex Exploration Co., (Cordex). This hitherto unavailable information summarized Cordex’s 1976 exploration, and much of this work was completed by geologists A. B. Wallace and R. Doler. It included some surface geological mapping completed at a scale of 1 inch (2.5 cm) to 100 feet (30.5 m) as well as underground mapping and sampling of the Intermediate and Lower Levels at 1 inch to 20 feet (6 m). During the summer of 1976 four underground diamond drill holes were completed (Ibex DDH #1 to #4), that were respectively 41.7 ft (12.7 m), 141 ft (43 m), 142.9 ft (43.6 m) and 200.7 ft (61.2 m) in length. Hole #1 was located “at the intersection of the main drift and the crosscut-bearing S 58 degrees W, 40 degrees up.” The other three holes are believed to have been drilled from underground although exact details of their collar locations are unknown.

Lindberg (1976), based on the results of Wallace’s mapping, suggested that the Bayhorse Mine sulphides represented Kuroko-type volcanogenic massive sulphide (VMS) mineralization, in part due to its association with an apparent rhyolite-basalt bimodal sequence. However, Wallace (1976) rejected this idea due to the scarcity of pyrite and the lack of any evidence of a chloritic pipe or stringer zone in the footwall rocks. Geological mapping by (Conway et al., 2014) shows that the rhyolite sill at the mine is not, as previously thought (Ray, 2015), part of the Huntington volcanic sequence but is a much younger intrusion. Although the precise age and origin of the Bayhorse mineralization is unknown, it may represent low sulphidation epithermal-type mineralization as noted in Section 8.2 below.

The Cordex data also includes details concerning an extensive 1976 program of assay sampling completed at surface and in the Lower and Intermediate underground levels. At least 521 grab and channel rock samples representing various unmineralized rock types and sulphide-bearing mineralized material were collected. These were sent to the Rocky Mountain Geochemical Corp., laboratory in Midvale, Utah. Using Atomic Adsorption (AA) methods all samples were assayed for Ag, Cu, Zn, and Au while values for Pb, Mo and uranium oxide were obtained on a few test samples. The Sb and As contents of a few mineralized samples were also determined via colorimetric methods. All 521 samples were barren of Au, Mo and uranium but 34 samples taken mostly from underground contained significant amounts of silver, as well as sporadically high values of copper, zinc and lead. Copper, Zn and Pb values ranged from a few parts per million (ppm) up to several percent with 11 percent Cu being the highest quantity recorded for that metal. Silver values in the 34 mineralized samples generally ranged between 1 to 15 ounces per ton (34.3 to 514.3 ppm), although a few samples contained bonanza values that ranged up to a maximum of 149.6 oz/t (5,129 ppm) silver.

An increase in silver prices in the early 1980’s and the results of exploration and sampling by Cordex staff led to renewed interest in the Bayhorse Mine. These activities are outlined in reports by Herdrick (1981) and Wise (1984). Herdrick (1981) completed additional geochemical sampling of the mineralization on the Intermediate Level of the mine (Figure 6.2). Based on the extent of the mineralization and its silver grades he estimated a probable tonnage at various places in the mine as follows (with metric conversions in brackets):
Upper Level.
320 ft long x 80 ft wide x 22 ft thick = 50,688 tons
(97.5 m long x 24.4 m wide x 6.7 m thick) (45,984 tonnes)
Less material mined (5000 tons) -5000 tons

Intermediate Level.
200 ft long x 85 ft wide x 22 ft thick = 33,660 tons
(61 m long x 26 m wide x 6.7 m thick) (30,536 tonnes)
Less material mined (1500 tons) -1500 tons

West Projection to fault
525 ft x 85 ft wide x 22 ft thick = 88,360 tons
(160 m x 26 m wide x 6.7 m thick) (80,159 tonnes)

Total probable ore (at 7.5 oz/t (257.14 ppm) (cut-off)
of 17 to 20 oz Ag/t 166,208 tons (150,781 tonnes)

Figure 6.2 Reported silver assays from historic underground channel sampling, Intermediate Level, Bayhorse Silver Mine*. Digitized by Campbell Ryland from data after Herdrick (1981).

*Recent sampling by Bayhorse has substantiated a number of these historic silver grades in this mine area.
The mineral resource estimates summarized above (from Herdrick, 1981) are not consistent with current NI 43-101 and CIM standards for mineral resource estimation. The authors of this Technical Report have referred to these estimates as "historic resources" and have included them for discussion purposes only. The reader is cautioned not to treat them, or any part of them, as current mineral resources. There is insufficient information available to properly assess the data, the estimation technique and the parameters/assumptions that were used to calculate these historical estimates, as well as the standards by which the estimates were categorized.

In his conclusions Herdrick (1981) stated "Because mineralization is controlled by stratigraphy, close proximity to the fold axis, and co-incidence of the Sunshine Fault near mineralization, continuity of mineralization is projected to extend more than 600 feet westerly, beyond the previous exposures within the mine." He further stated that "Previous exposures verify that more than 400 ft of ore strike length is exposed from the Upper Level through the Intermediate Level. Projections of ore tonnages in the main body, based upon geology, yield a probable tonnage of approximately 160,000 tons within the 7.5 oz/ton cut-off, having a grade of approximately 17 to 20 oz/ton Ag."

Herdrick (1981) estimated that if on-site milling was contemplated from the two levels and the West Projection, he could quantify a larger possible tonnage using a 3.5 oz per ton (120 ppm) cut-off, but while determining a possible tonnage, he did not ascribe a grade to the tonnage.

In 1983 Cash Industries ran a 485 ft (148 m) drift on the same level as one of the larger historic stopes. Sunshine Mining Company did further exploration and continued some production until 1984 (Trevenex, 2008). In 1984 Silver King Mines Inc. (Silver King) conducted extensive underground drilling and channel sampling (Figure 6.3). They also extended various drifts, including the western extension to the Intermediate Level, and reportedly removed 5,718 tons of mineralized rock that averaged 16.7 oz/t (572.6 ppm) silver (Wise, 1984). However, the reader is cautioned that this data cannot be verified by the authors of this report.
Figure 6.3 Southeast-northwest cross-sections (view West) showing results of some historic (1984) underground drilling, Intermediate Level, Bayhorse Silver Mine. Data digitized by Campbell Ryland from unpublished records of Silver King Mines.
7.0 GEOLOGICAL SETTING & MINERALIZATION

7.1 District Geology

The district geology of the Huntington and parts of the Olds Ferry quadrangles as compiled by Brooks (1979) is shown in Figure 7.1. The generalized stratigraphic sequence in the district is as follows:

- Alluvial & landslide debris: the latter is common along the steep slopes of the Snake River valley.
- Younger basalt flows and mafic volcanic centers of uncertain age.
- Miocene tuffaceous lake and stream deposits.
- Miocene basalt flows of the Columbia River Basalt Group.
- Early to Mid-Jurassic Weatherby Formation schistose metasediments. Locally there is a conglomeratic “Jet Creek Member”, which may be basal.
- Disconformity or unconformity.
- Late Triassic Huntington Formation; basalts, andesites & tuffaceous sediments.
- Pre-Permian and Permian foliated sedimentary and volcanic sequences.

The Weatherby and Huntington Formations are cut by late rhyolite dykes and sills of uncertain age, but clearly post-date the Early to Mid-Jurassic Weatherby Formation. Mineralization at the Property is at least spatially associated with, and may be more closely related to, these late rhyolite dykes/sills.

The oldest units in the district are believed to be an unnamed series of pre-Permian and Permian rocks that include foliated sedimentary and volcanic sequences, as well as some ultramafic units. Many of these rocks crop out close to the northeast trending Connor Creek Fault which lies approximately 15.5 miles (25 km) west-northwest of the Bayhorse property (Figure 7.1).

Mineralization at the Property is hosted within the Huntington Formation, which mainly comprises a late Triassic package of mafic volcanic flows with some tuffaceous sediments, volcanic conglomerates and minor limestones. La Maskins (2008) states that the Huntington marine sedimentary rocks were laid down at shallow to intermediate depths adjacent to volcanic edifices. The formation has undergone zeolite to greenschist regional metamorphism (Brooks, 1979). Unlike the younger and overlying Weatherby Formation, the Huntington Formation lacks strong schistose fabrics but locally has a pronounced fracture cleavage. Its rocks mostly strike east to northeast and dip moderately to steeply north or northwest, however, no major fold structures have been identified.
Figure 7.1 Geology of the Huntington & Olds Ferry districts, eastern Oregon showing location of the Bayhorse property (after Brooks, 1979).
At the Bayhorse Property, the schistose meta-sediments of the Early to Mid-Jurassic Weatherby Formation disconformably overlie the Huntington Formation (Clay Conway, personal communication, 2018) and these rocks underlie large parts of the district north and west of the Property (Figure 7.1). These shallow marine meta-sediments include wackes, siltstones, argillites and lesser sandstone, tuff, limestone, with gypsum and anhydrite-bearing beds (Brooks, 1979). They have been overprinted by a moderate to strong foliation and some rocks are schistose or phyllitic with chlorite-sericite planar fabrics. In the vicinity of the historical Bayhorse Mine, Brooks (1979) has mapped the “Jet Creek Member” which is a basal part of the Weatherby that directly overlies the older Huntington Formation. It includes pebble and cobble conglomerates as well as other fine grained clastic sedimentary rocks with minor gypsum and anhydrite. Like the underlying Huntington rocks, the Weatherby units strike mostly east to northeast and dip northerly.

Brooks (1979) records several small intrusive bodies in the district, some of which lie more than 12.5 miles (20 km) west of the Bayhorse property (Figure 7.1). These range in composition from quartz diorite to granodiorite, and some are Late Jurassic to Early Cretaceous in age (Brooks, 1979). Present on and adjacent to the Bayhorse property is a suite of rhyolitic intrusions that are economically important as they are believed to be genetically and also spatially related to the silver-rich mineralization. Initially, because these rocks are found in the Huntington Formation they were assumed to be either part of the Huntington sequence or contemporaneous intrusions. However, recent mapping by Dr. Clay Conway has shown that the rhyolite dikes and sills extended up into the Weatherby rocks proving that they are either syn or post Weatherby in age. Many of the dikes are less than 50 m in thickness but immediately east of the Property and the Snake River in Idaho there is a small rhyolite plug (Clay Conway, personal communication, June 2018).

7.2 Property Geology

The geology of the historical Bayhorse Mine property as first compiled by Livingston (1923) and later by Full (1959) is seen in plan and section views in Figures 7.2 and 7.3, respectively. The geological map of the district (Brooks, 1979; Figure 7.1) shows that the west and northwest section of the property is largely underlain by early to mid-Jurassic rocks of the Jet Creek Member of the Weatherby Formation, part of which Full (1959) called the “Red conglomeratic schist”. It is a meta-sedimentary package with wackes, conglomerates, siltstones, argillites, tuffs and some gypsum and anhydrite-bearing units. The member was deposited in a shallow marine environment and may represent the basal coarse clastic portion of the Weatherby Formation where it disconformably overlies the Huntington Formation rocks. The Weatherby has been subjected to low grade zeolite-greenschist regional metamorphism and its rocks are locally overprinted by foliated schistose or phyllitic fabrics (Photo 7.1).

The southern portion of the property is underlain by northerly-dipping Carnian to Norian (Late Triassic) rocks of the Huntington Formation (Brooks, 1979; Figures 7.1 – 7.3) which host the Bayhorse deposit Ag-rich mineralization. This includes some shallow water carbonate facies rocks (La Maskin, 2008) but is dominated by a volcanic package laid down in shallow to intermediate depths. The igneous rocks range in composition from basalt to rhyolite, although andesites are the most common type. The mafic rocks include flows (some amygdaloidal), ash tuffs, bedded tuffaceous sediments, volcanic wackes and conglomerates, as well as some coarse
Figure 7.2 Geology of the Bayhorse Mine property with inset of the underground workings. Geology and legend adapted after Livingston (1923) and Full (1959).
tuff breccias and possible slump breccias containing well rounded cobbles and clasts (Photo 7.2). One andesite tuff examined by Leitch (2013) contained 40% albitized and sericitized plagioclase, 25% carbonate, 20% chlorite, 5% potassium feldspar (K-spar) of probable primary origin, and less than 5% hematite and rutile after primary mafic minerals.

The Huntington Formation volcanics in the mine area are intruded by several rhyolite dikes and sills that are economically important host rocks for some of the Ag-rich mineralization. They form pale, massive, highly siliceous rocks. Although Brooks (1979) mapped them within the overall Huntington volcanic package, mapping by Conway et al. (2014) shows that they intrude both the Huntington and Weatherby rocks. Thus, they are syn or post Weatherby in age although their precise age is unknown. Thin section studies of the rhyolitic rocks (Leitch, 2013) show wide ranges in their plagioclase versus K-spar contents. Many contain up to 30% primary K-spar which in most cases is strongly sericitized, and some have up to 5% secondary K-spar as veinlets. Other examples have up to 45% plagioclase that is strongly altered to albite and sericite. Primary quartz ranges up to 25% with lesser amounts of secondary silica as veinlets. The original mafic minerals generally comprise less than 2% and are often totally replaced by rutile, apatite, sericite, limonite and iron carbonate. Where the rhyolite is well mineralized there may be up to 30% carbonate as calcite and dolomite.
In addition to the Huntington and Weatherby rocks, the property includes a number of young narrow mafic dikes that may be related to the Miocene-age Columbia River Volcanic Group. Historic maps of the Bayhorse Mine underground workings show one of these east-west trending “diabase” dikes cutting the stratigraphy and mineralized zone at an oblique angle (Figure 7.3). Also present locally along the steep east facing slopes of the Snake River valley are several slumped areas with landslide debris which are typified by hummocky topography.

Since the initial Bayhorse NI 43-101 document was released (Ray, 2015), a considerable amount of surface geological mapping has been completed by Dr. Clay Conway, P.Geol., both on and adjacent to the property (Conway et al., 2014). Reconnaissance mapping was also completed eastward into Idaho across the Snake River in rocks that represent an eastward extension of those hosting the historical Bayhorse Mine. In addition, Dr. Conway was able to recognize many important geological features, including the presence of some silver mineralization, along the Sunshine Thrust Fault; the latter may represent large tectonic clasts of rhyolite in the thrust. The property geology from Dr. Conway’s recent mapping is shown in Figures 7.4 to 7.8.

The results of these recent findings are outlined by Clay Conway in numerous oral and written communications by him to the authors. Many of his findings clarify some of the geological conclusions presented by Ray (2015) while others show that some of the earlier historic ideas were incorrect. The most important of these recent conclusions are:

1. At the Bayhorse mine the Weatherby rocks appear to disconformably overlie the Huntington strata. Alteration of the upper part of the Huntington may be due to paleo-weathering.

2. The rhyolite intrudes both the Huntington and its contact with the Weatherby, as well as extending up into the younger Weatherby rocks. This proves that the rhyolite is not part of a bimodal volcanic suite in the Huntington but is either syn- or post Weatherby in age. For various reasons the rhyolite is thought to be genetically related to the Bayhorse Mine mineralization, it follows that the latter was related to a relatively young, syn- or post Weatherby event.

3. Historic reports (Livingston, 1923; Anderson, 1923; and Hershey, 1925) state that the Bayhorse Mine mineralization occurs as a steeply dipping zone that is hosted by rhyolite (Figure 7.2) or largely follows the rhyolite-Huntington contact. However, mapping (Conway et al., 2104; Figures 7.3 to 7.8) shows that some of the mineralization lies along the Sunshine Thrust Fault as tectonic clasts. This structure is sub-horizontal to gently west-dipping and involved easterly directed movements. In parts of the mine workings it cuts and displaces the steeply dipping intrusive rhyolite unit. In these areas the thrust is roofed by rhyolite and floored by Huntington rocks. Elsewhere the structure separates the Huntington rocks from conglomeratic schists of the overlying Weatherby Formation.

4. Approximately 330 ft (100 m) west of, and structurally above the Sunshine structure is the Snowstorm Thrust Fault which has offset the rhyolite sill about 2300 ft (700 m) to the south in an apparent left-lateral sense. This suggests many kilometers of east verging thrust movement. This thrust is believed to be a complimentary structure to the underlying Sunshine fault, having also involved east-directed movements. From cross-sections presented in Figures 7.5 and 7.6, it appears to dip westward at a steeper angle than the Sunshine structure; this raises possibilities that further west into the hillside the two thrusts may intersect.
Figure 7.4 Geology of the Bayhorse Mine area (after Conway et al., 2014). Note cross section lines A-A’, B-B’, C-C’ and D-D’-D”.

Geology
- **t**: Talus (Quaternary): Composed of rock types from up-slope.
- **r**: Rhyolite (Triassic or younger): Massive rhyolite porphyry. Fine-grained with sparse small f.spar phenocrysts. Probable sill between cs & va units. Primary host & origin of Ag mineralization.
- **sg**: Schist with gypsum (Permian/Triassic): Variable schist with gypsum, fine-grained non-calcareous, conglomeratic, & minor limestone layers.
- **cs**: Conglomeratic schist (Permian/Triassic): Purple to green schist comprising (uncommon) shale to (dominant) polymict conglomerate with shaley matrix. High/mod. pebble/cobble flattening & elongation (2:1-3:1) roughly down-dip. Intermediate to felsic (some possibly pumiceous) volcanic clasts.
- **va**: Volcaniclastics & andesite (Permian/Triassic): Dominated by highly variable volcanioclastic with considerably lesser mafic flows of andesitic porphyry, locally amygdaloidal. Almost all rocks are massive with weak imperceptible foliation. Almost always dark reddish brown (abundant hematite). Clastic rocks comprise pebble to rarely boulder conglomerate of highly variable volcanic porphyry types, typically dacite to andesite but possibly rhyolite to basalt. Abundant grit to cobble sized breccia beds, some with large felsic component. Local well-defined thin- to medium-beded rocks.

Underground Workings
- **1983 adit (collapsed)**
- **Open**: Miscellaneitous short adits
- **Sub level**
- **Stop**: Upper Level workings
- **Stop**: Intermediate Level workings
- **Stop**: Lower Level workings

Trace & thrust direction
- Inferred continuation
- Inferred below cover
- **Fault**: Direction of oblique slip
- **Dip direction & magnitude**
Figure 7.5 Geological cross section of the Bayhorse Mine showing the location of cross section lines B-B’, C-C’ and D-D’-D” (after Conway et al., 2014).
Figure 7.6 Geological cross section of the Bayhorse Mine showing the location of cross section lines A-A' and D-D'-D'' (after Conway et al., 2014).
Figure 7.7 Geological cross section of the Bayhorse Mine showing the location of cross section lines A-A' and D-D'-D'' (after Conway et al., 2014).
5. The Sunshine thrust has an imbricate zone that on surface is seen to reach 26 ft (8 m) or more in thickness (Photo 7.3) while underground it reaches 40 ft (13 m) in thickness (Conway, personal communication, 2018). The Sunshine structure contains tectonic slices of rhyolite, Huntington and Weatherby rocks as well as strong mineralization locally. Along its strike to the north and south the Sunshine structure undulates with pronounced crests and troughs. These undulations appear to strike westerly and one of the main zones of mineralization outlined to date is thought to lie along a crest feature. The wavelengths of these crests and troughs are unknown but based on regional mapping (Conway, personal communication, 2018), they are probably on the order of 262-328 ft (80-100 m) maximum. However, the fault crest at the Bayhorse Mine seems anomalously large; by contrast, elsewhere the various exposed fault surfaces of the Sunshine and Snowstorm thrusts are generally more planar.
Photo 7.1 Weatherby Formation schistose meta-sediments with small Z-kink folds. UTM 482584E-4922336N.

Photo 7.2 Huntington Formation monomictic andesite tuff breccia or debris flow. Matrix-supported, sub-angular to sub-rounded andesite clasts up to 40 cm long in a tuffaceous groundmass. UTM 482566E-4921944N.
6. Assays suggest that the “unmineralized” rhyolite in the mine is highly anomalous in silver, averaging 0.292 oz/t (10 ppm) Ag (Conway, personal communication June 2018). This, and the close spatial association between the intrusion and the silver-rich mineralization at the historic mine, suggests a genetic and temporal relationship between the two. However, mapping (Figure 7.2) shows that although the mineralization is hosted by, and strongly controlled in the Sunshine Thrust, it also cuts and displaces the north-dipping rhyolite body. It is possible that a precursor Sunshine Thrust existed prior to the intrusion of the rhyolite sill and that much of the silver-rich sulphides was deposited in this initial structure. Subsequent movements would have displaced the dike and presumably also cut the mineralization, although to date no thrust deformation has yet been identified in the sulphides.

7. Although substantial mineralization has recently been discovered within the Sunshine Thrust, rich mineralization has also been identified beneath the structure either within the rhyolite or close to the rhyolite-Huntington contact. The presence and morphologies of the Big-Dog stope and the recently discovered Legend Zone raises possibilities that these could represent feeder zones to the overlying mineralization within the Sunshine structure, or they could represent subsidiary mineralized structures.

8. The origin, age and deposit type of the Bayhorse mineralization are unknown, although it is thought to be genetically related to the rhyolite. Originally, it was thought possible that the rhyolite was part of the Huntington volcanic sequence and that the mineralization could be volcanogenic massive sulphide (VMS) in origin. However, mapping by Conway et al. (2014) shows that the intrusive rhyolite is either syn or post Weatherby in age which negates a VMS origin. Another more likely theory (Ray, 2015) is that the Bayhorse mineralization formed in a
high-level epithermal environment although this has not yet been fully demonstrated. Our current knowledge indicates that the sulphide mineralization is structurally and stratigraphically controlled and it is possible that it originated from a postulated rhyolite body, either at depth or along fault dip to the west or east.

As the first step in the resource estimation effort described in Section 14 of this report, the authors of this report focused on a predominance of structural controls on mineralization for the basis for the geological modeling of the Bayhorse deposit. Based upon the extent and orientation of historical workings, and interpreted mineralized zones shown on historical sections, the Bayhorse deposit was modeled as epithermal Ag mineralization along and between variably south-dipping cross structures (i.e. 20-40° south-dipping ‘horse’ faults) between theoretical (but not yet observed) ‘roof’ and ‘sole’ faults that parallel the currently defined extents of the Sunshine Thrust fault zone. This model draws in part upon the recent work of Conway (as discussed above) that suggests mineralization may be controlled, or otherwise related to, a more (vertically) extensive precursor to the current Sunshine Thrust.

7.3 Mineralization

The primary style of mineralization on the Bayhorse Property comprises fracture-controlled veins, pods and replacements of sulphide and sulfosalts mineralization (mostly tetrahedrite-tennantite with other Ag sulfosalts) that are commonly hosted by the Sunshine Thrust Fault, late rhyolite dykes and sills, or occupy rhyolite-andesite faulted contacts. This Ag-rich ± Cu ± Zn mineralization has been historically mined at the Property and continues to be the main focus of Bayhorse Silver’s ongoing exploration and development work.

Fracture-controlled Cu oxide mineralization as either malachite, azurite or black Cu-Mn wad is common on surface in the vicinity of the Intermediate and Upper adits, where it is hosted by both andesite and rhyolite. The Cu oxide is believed to be the weathering product of Cu-bearing sulfosalts (tetrahedrite-tennantite series) mineralization. Sulfosalts mineralization, with lesser sphalerite, chalcocite, covellite and trace galena, is common in stockpiled materials on surface near the Upper and Intermediate Level portals. Also, at the Intermediate Level portal, several mineralized outcrops are present along or close to the Sunshine Thrust, which separates rhyolite from underlying andesitic Huntington rocks (Photo 7.2). Apart from some rare Cu oxides, no surface mineralization was observed in the vicinity of the Lower Level portal.

As noted by Conway (2018), the main sulphide minerals in the Bayhorse Mine are the tetrahedrite-tennantite series ((Cu,Fe)_{12}(Sb,As)_{4}S_{13}), together with sphalerite (ZnS), and galena (PbS). Geochemical data indicates that antimony (Sb) is much more abundant than arsenic (As) within the Bayhorse mineralization, indicating a predominance of tetrahedrite. Freibergite ((Ag,Cu,Fe)_{12}(Sb,As)_{4}S_{13}) is a tetrahedrite group mineral in which Ag substitutes in the Cu-Fe position. Since Ag is closely associated with sulfosalts mineralization, the dominant sulfosalts mineral present in Bayhorse mineralization may actually be freibergite. Petrographic investigation of the Bayhorse mineralization is recommended as part of a comprehensive metallurgical test program.

Surface and underground exposures suggest that there is a strong spatial relationship between the Bayhorse sulfosalts-sphalerite mineralization and rhyolite. On surface, two modes of sulfosalts-sulphide mineralization are observed; (i) massive veins and pods hosted by the Sunshine Thrust
where it separates rhyolite from andesite; and, (ii) as narrow (<1.2 inch [3 cm]) fracture-controlled veins and stockworks that are entirely hosted by, or replace rhyolite or Huntington rock as seen in the Legend Zone (Photo 7.4). Type (i) mineralization is observed at the face of the Intermediate Adit where bonanza silver grades of up to 150 kg per tonne occur (Ray, 2015). The sulfosalts are mostly dark grey to black, fine-grained and massive although some coarsely crystalline tetrahedrite-tennantite occurs locally. The sphalerite is low in Fe, being colorless to pale yellow (Leitch, 2013), which makes it difficult to identify with the naked eye, even though it can make up 20% of the veins. Pyrite is generally uncommon but does occur in small amounts as fine grained disseminations and veinlets. The sulfosalts mineralization is associated with silicification, thin quartz stringers, calcite-dolomite carbonate, chlorite, and minor sericite and K-spar (Leitch, 2013).

Photo 7.4 Sulfosalts-sphalerite-rich mineralization (dark) partly replacing silicified pink rhyolite. Note the delicate scalloped contacts between the mineralization and the host-rocks. Rock dump at UTM 482542E-4922065N.

In historic reports by Livingston (1923), Anderson (1923) and Hershey (1925), it is stated that the underground mineralization occurs as a 40 to 80 ft (~12 to 24 m) thick zone that strikes west-northwest to east-west and dips steeply north, sub-parallel to the trend and inclination of the surrounding rocks. In their interpretation the mineralized zone lies along the contact between andesite to the south and rhyolite to the north. The mineralized zone and the igneous country rocks are obliquely cut by a younger, west-southwest trending sub-vertical narrow mafic dikes (Hershey, 1925; Figure 7.3). However, surface and underground mapping (Conway et al., 2014) indicates that, in part, the mineralized body is essentially flat lying and elongated east-west along the Sunshine Thrust. Conway indicates that the highest grade material lies within the Sunshine structure and perhaps within rhyolite fault slices in the 20 to 40 ft (~6 to 12 m) thick fault zone. His
conclusions, and supported by the authors of this Technical Report, are based largely on the dimensions and relative positions of the Sunshine, Junction, and Big Dog stopes. The mineralization observed so far beneath the Sunshine Thrust is in footwall andesite beneath the Sunshine and Big Dog stopes. It is generally of lower grade, as typified by the newly discovered Legend Zone. However, the footwall argillic to silicic alteration with local chlorite may be quite extensive and occurs mainly as white to pale green veins and patches within the red-brown hematite-rich andesite. Central to the pale alteration veins are gray to black veins and veinlets of very fine-grained mineralization that is presumed to be mostly tetrahedrite. It is possible that these extensive areas of lower grade material represent feeder zones for the overlying and higher grade mineralization. It is also possible that sulphide mineralization at the Bayhorse Mine occurs in both the flat lying Sunshine Thrust, as demonstrated by Conway et al., (2014) and as a steeply dipping body as argued by Livingston (1923), Anderson (1923) and Hershey (1925). This uncertainty needs to be resolved by underground drilling.

The site visits conducted by three of the authors of this report (Dufresne, Turner and Ray) are discussed in a subsequent section of this report. In short, all three co-authors observed sulfosalt and sulphide mineralization in stockpiled mineralization near the Intermediate Level portal associated with altered rhyolite. Mr. Turner and Dr. Ray conducted site visits independently following the opening of access to the historical (1980s) western workings of the Intermediate Level of the Bayhorse Mine. This allowed both to make direct observations, and (in the case of Mr. Turner) to conduct sampling of mineralization remaining in the ribs of the Big Dog Stope. The observations included the confirmation of sulfosalt and sulphide mineralization associated with rhyolite that appeared to be bounded by shallow south dipping structures.

Polished section petrography studies (Leitch, 2013) indicate that some of the sulfosalt-sulphide-rich samples contain up to 20% sphalerite and 50% sulfosalts minerals. The latter includes at least three unidentified varieties, including possible tennantite-tetrahedrite. Also present is possible acanthite (Ag$_2$S), with minor galena and chalcopyrite, together with covellite and malachite. The rare bonanza grades of up to 4,385.8 oz/t (150,370 ppm) Ag (Ray, 2015) suggests the presence of some native silver, although this is unproven.

Another style of hydrothermal alteration and/or mineralization has been identified at the Property. The mineralization is in the form of white vuggy quartz veins that are locally stained with hematite-jarosite. These are mostly hosted by the schistose Weatherby Formation, although some of the faulted Huntington andesitic volcanics close to the Sunshine Thrust also host these quartz veins. Assay results show this quartz veining is barren of precious and base metals (Ray, 2015). No economic significance is attached to these veins.

7.4 Structure

Brooks (1979) map compilation (Figure 7.1) shows that on a regional scale the district has two dominant fault sets. One set trends northeast and is represented by the Connor Creek Fault. This major structure marks the northern limit of the Weatherby Formation and it probably controlled the Connor Creek gold vein (see Section 15). The other fault set strikes northwest to north-northwest and some of the latter have controlled the trend of the Snake River valley. Mapping on
the Bayhorse property by Conway et al. (2014) and Conway (personal communication, 2018) shows the presence of north-northwest striking faults as well as two gently west dipping thrust faults, the Sunshine and the Snowstorm structures. Both are the result of easterly vergence with the Snowstorm lying above the Sunshine, with the latter being an important host to mineralization (Figures 7.4 to 7.8).

The schistose foliation in the Weatherby Formation meta-sediments (Photo 7.1), as seen at UTM 482584E-4922336N close to the junction between the Snake River Road and the track leading to the three adits, strikes northeast to north-northeast and dips westerly at between 50 and 70 degrees. No folds responsible for the schistosity were identified although the chlorite-sericite foliation is deformed by small Z-type kink folds (Photo 7.1). The observed bedding and volcanic stratigraphy in the Huntington Formation close to the adits strike east-west and dip moderately to steeply northwards at between 45 and 70 degrees. Immediately south of the Intermediate Adit there is a prominent deep gulley that may mark a west-southwest trending, possibly north dipping normal fault. No folds responsible for the inclined Huntington Formation rocks were identified, but the package has undergone several phases of brittle faulting, some of which are probably economically important. Other possible faults include:

- Some gently inclined structures were seen cutting the Huntington Formation. One notable example is seen at UTM 482527E-4921957N. Here a southeast striking, gently southwest dipping (25 degrees), 6.6 ft (2 m) wide fault gouge zone separates underlying massive Huntington andesite ash tuffs from overlying andesite tuff breccia or debris flow. The gouge contains angular to sub-rounded andesite clasts or “knockers” up to 6.6 ft (2 m) long.

- A 13.1-19.5 ft (4-6 m) wide fault zone with gouge is seen about 656 ft (200 m) west of, and upslope from, the Intermediate Adit at UTM 482354E-4921887N. This fault contains small (0.4 in (1 cm)) clasts of altered rock and white quartz vein fragments. Its trend is uncertain but it appears to be a late structure.
8.0 DEPOSIT TYPE

8.1 Introduction

Little is currently known about the type and style of the Bayhorse mineralization except it is highly enriched in silver, and contains at least three types of sulfosalt minerals, including tetrahedrite-tennantite, together with abundant sphalerite, possible acanthite (Ag$_2$S) and trace chalcopyrite and galena (Leitch, 2013). There is a spatial correlation between the sulfosalt-sulphide mineralization and the rhyolite, and a genetic relationship is likely although the true origin and classification of the Bayhorse mineralization are uncertain. Since the rhyolite is now known to intrude both the Huntington and Weatherby rocks (Conway, personal communication, 2018) it is likely that the mineralization is either syn or post Weatherby in age.

One unlikely possibility is that the Bayhorse mineralization is related to the mesothermal silver-rich veins occurring in the Coeur d'Alene-Idaho Silver Belt, as described by Bennett et al. (1989) and Mauk and White (2004). However the latter show profound differences to the Bayhorse mineralization including (i) they are generally hosted by mid-Proterozoic (1.4 to 1.5 Ga) basin-fill sedimentary rocks of the Belt Super-group, (ii) the veins seldom exceed 15 ft (4.6 m) in width and are famous for their comparative long strike (>0.31 miles [0.5 km]) and great vertical depth (>0.93 miles [1.5 km]) and (iii) they show no spatial association with rhyolitic intrusions.

The Bayhorse mineralization is associated with quartz, silica, carbonate veining and minor sericite, chlorite and potassium feldspar. In the Legend Zone, the mineralization is associated with chlorite-clay stockwork veining (Photo 8.1). This mineralogy, together with the colorless low Fe sphalerite and abundant sulfosalts, suggests that the mineralization was deposited under relatively low temperature conditions, at a relatively high structural level and distal to its magmatic hydrothermal source (Leitch, 2013).

The rhyolite bodies are probably related to a nearby or underlying felsic, possibly Cu-bearing intrusion and the mineralization likely formed in an environment that was either in the base-metal rich lower portion of an epithermal system or close to the epithermal-mesothermal boundary. Such low-sulphidation epithermal deposits occur world-wide; U.S examples include Comstock in Nevada, Creede in Colorado and the Republic district in Washington, as well as El Bronce, Chile, and Lihir in Papua- New Guinea (Panteleyev 1996 and references therein). According to Buchanan’s (1981) epithermal model, the upper parts of the hydrothermal system where boiling occurs is characterized by enriched Au and/or Ag mineralization that generally lacks base metals. This passes to the lower parts of the epithermal system where the base metal content increases, generally with a corresponding decrease in Au and Ag.

Buchanan’s depth-related metal zoning assumes that the system is open and uncapped. However, if the upper portions of the system are sealed, increasing pressure can cause a telescoping of the metal zoning which results in the gold and silver occurring with the base metals. The Au-rich zone at Bayhorse, if it existed, may have been removed by erosion and the Ag-Cu-Zn-Pb mineralization at the mine probably represents the basal part of the epithermal system. However, if pressure-related telescoping of the metal zones took place at Bayhorse, it is possible that some Au-rich mineralization could be found either at depth or at a higher stratigraphic-structural level.
Photo 8.1 Stockworks of clay-chlorite alteration with some tetrahedrite mineralization hosted by the Huntington Formation as seen in the Legend Zone, Intermediate Level.

8.2 Characteristics of low sulphidation epithermal systems

The following information is taken from published papers by White and Hedenquist (1990), Sillitoe (1993) and Panteleyev (1996). Classical epithermal deposits of this type commonly comprise quartz veins, stockworks and hydrothermal breccias that can carry gold, silver, electrum, argentite and pyrite with lesser and variable amounts of sphalerite, chalcopyrite and galena. Tetrahedrite-tennantite and other sulfosalt minerals tend to be less common but when present they form in either high-level (epizonal) to near-surface environments or at depth in the sub-epithermal parts of the system. This could be significant regarding future down-depth or along strike drilling at Bayhorse.

These deposits form in high-level hydrothermal systems at depths ranging from near surface hot spring settings to c. 0.6 miles (1 km). Regional-scale fracture systems related to grabens, calderas and flow-dome complexes can be important regional controls. Locally, extensional structures in volcanic fields (normal faults, fault splays, ladder veins and cymoid loops, etc.) are common. High-level (sub-volcanic) stocks and/or dikes occur in some areas as well as locally resurgent or domal structures related to underlying intrusive bodies. Low sulphidation epithermal deposits are most commonly related to calc-alkaline andesitic rocks although some deposits occur in areas with bimodal volcanism and extensive sub-aerial ash flow deposits. The ore zones are typically localized in structures, but may also occur in permeable lithologies.
The general ore mineralogy of these deposits includes pyrite, electrum, gold, silver, argentite, chalcopyrite, sphalerite, galena, tetrahedrite-tennantite, silver sulfosalt and/or selenide minerals. Deposits can be strongly zoned both along strike and vertically. The vertical zoning, which may extend over 820 to 1150 ft (250 to 350 m) ranges from a base metal-poor, Au-Ag-rich top that passes downwards to a relatively Ag-and base metal-rich zone; the latter resembles the mineralization seen at Bayhorse. This is underlain by a zone with increasing base metals but decreasing Au and Ag which grades further downwards into a sparse base metal, pyritic zone. From surface to depth the various metal zones contain: (1) Au-Ag-As-Sb-Hg, (2) Au-Ag-Pb-Zn-Cu, (3) Ag-Pb-Zn. Mineralization is often associated with extensive silicification that may be flanked by sericite-illite-kaolinite assemblages. Propylitic alteration dominates at depth and peripherally. Silver-dominant epithermal deposits generally have higher base metal contents than those with high Au and/or Au-Ag.

The ore controls of these deposits in some districts worldwide are often related to specific metallogenic events, either structural, magmatic, or both. The veins are often emplaced within a restricted stratigraphic interval generally within 0.6 miles (1 km) of the paleosurface. Mineralization near surface takes place in hot spring systems, or in the deeper underlying hydrothermal conduits. At greater depth it can occur above, or peripheral to porphyry and possibly skarn mineralization. On a local scale, normal faults, margins of grabens, radial and ring dike fractures and both hydrothermal and tectonic breccias are all ore fluid channeling structures. Through-going, branching, bifurcating, anastomosing and intersecting fracture systems are commonly mineralized. Ore shoots form where dilational openings develop, typically where the strike or dip of veins change. Hanging wall fractures in mineralized structures are particularly favorable for higher-grade ore.

9.0 EXPLORATION

9.1 Introduction

The Company commenced surface geological sampling in December, 2013 (Conway et al., 2014), shortly after acquisition of the Bayhorse Property. In addition, some reconnaissance mapping was conducted east of the Property across the Brownlee Reservoir in Idaho. This mapping was conducted in order to examine rocks that appear to be on-strike with those at the historical mine (Conway, personal communication, 2018).

Following the 1980’s phase of mining, the Upper Level Portal became entirely hidden by rock fall material until it was rediscovered by Bayhorse staff. Once discovered, both the Upper Level Portal and Intermediate Portals were re-opened and re-timbered. The historical workings were surveyed by Bill Willoughby and a program of sampling of the accessible old stopes, haulage ways and mineralized sections began. The authors have validated the Bayhorse sampling and surveys.

In November 2013, Ray (2015) completed limited surface assay grab sampling in the mine vicinity, including the collection of selected mineralized samples from a historic rock dump located at UTM 482542E-4922065N (Photo 9.1). In addition, some well mineralized vein samples outcropping immediately above the Intermediate Portal were collected. The location of these
samples is shown in Figure 6.1. Following the sampling, approximately 300 kg of material from the historical rock dump located at UTM 482542E-4922065N was sent to Met-Solve Laboratories in British Columbia for metallurgy test work and to test the dense media separation characteristics. Grab, chip, channel, and long hole samples were collected by Bayhorse staff in 2017 and 2018. The samples were collected from underground parts of the Intermediate Level, including the recently discovered Legend Zone, the historic Big Dog Stope, and the Sunshine Stope.

Photo 9.1 Historic rock dump at UTM 482542E-4922065N from where assay samples GRBH-01 to 05 and 07, 08 were collected.

9.2 Geological Mapping

Historical geological mapping of the district at a scale of 1:62,500 (Figure 7.1) was completed and compiled by Brooks (1979), while some parts of the property were mapped by Full (1959). In November 2013, Dr. Clay Conway, P. Geol., began geological mapping of both the property and adjacent areas, including the on-strike rocks east of the Brownlee Reservoir. Refer to Section 7 for the results of his mapping on the property, together with geological cross sections shown in Figures 7.2 to 7.7. Dr. Conway’s significant conclusions are detailed in previous reports on the Property by Conway et al. (2014) and Conway (2018) with key conclusions summarized below:

- At the mine the Weatherby rocks unconformably or disconformably overlie the Huntington strata. Alteration along the contact and in the immediate upper parts of the Huntington may be due to paleo-weathering.

- The rhyolite intrudes both the Huntington and the younger Weatherby rocks. Likely the rhyolite is not part of a bimodal volcanic suite in the Huntington but is either syn or post
Weatherby in age. The rhyolite is thought to be potentially related to the Bayhorse Mine mineralization, it follows that the latter was related to a relatively young event.

- Historical reports (Livingston (1923), Anderson (1923) and Hershey (1925)) state that the Bayhorse Mine mineralization occurs in part as a steeply dipping zone that is hosted by rhyolite or largely follows the rhyolite-Huntington contacts. However, mapping (Conway et al., 2014; Figures 7.3 to 7.6) shows that mineralization is also hosted by the Sunshine Thrust, possibly as tectonic clasts transported during thrust movement. This structure is sub-horizontal to gently west-dipping and involved easterly directed movements. In parts of the mine workings, it cuts and displaces the intrusive rhyolite. In these areas the thrust is roofed by rhyolite and floored by Huntington rocks. Elsewhere the structure separates the Huntington rocks from conglomeratic schists of the overlying Weatherby Formation.

- Approximately 330 ft (100 m) west of the Sunshine fault is the Snowstorm Thrust which has offset the rhyolite sill about 2,300 ft (700 m) to the south in an apparent left-lateral sense. This suggests extensive east vergent thrust movement occurred. This thrust is believed to be a complimentary structure to the underlying Sunshine fault, having also involved east-directed movements. From cross-sections presented in Figures 7.3 to 7.5, it appears to dip westwards at a steeper angle than the underlying Sunshine structure; this raises possibilities that further west into the hillside the two thrusts may join one another.

- The Sunshine Thrust has an imbricate zone that on surface is seen to reach 26 ft (8 m) or more in thickness while underground it reaches 40 ft (13 m) in thickness (Conway, personal communication, 2018). The Sunshine structure contains tectonic slices of rhyolite, Huntington and Weatherby rocks. Along its strike to the north and south the Sunshine structure undulates with pronounced crests and troughs; the wavelengths are unknown, but based on regional mapping Conway (personal communication, 2018), believes they are probably on the order of 262-328 ft (80-100 m) maximum.

- Assays suggest that the unmineralized rhyolite in the mine is highly anomalous in silver, averaging 0.292 oz/t (10 ppm) Ag. This, and the close spatial association between the intrusion and the silver-rich mineralization at the mine suggests a genetic and temporal relationship between the two.

- The origin, age and deposit type of the Bayhorse mineralization are unknown, although it is thought to be genetically related to the rhyolite. Originally it was thought possible that the rhyolite was part of the Huntington volcanic sequence and that the mineralization could perhaps be volcanogenic massive sulphide (VMS) in origin. However, mapping by Conway et al. (2014) shows that the intrusive rhyolite is either syn- or post Weatherby in age which negates a VMS origin. Another more likely theory (Ray, 2015) is that the Bayhorse mineralization formed in a high-level epithermal environment although this is still unproven. Our current knowledge indicates that the sulphide mineralization is structurally and stratigraphically controlled and it is possible that it originated from a postulated rhyolite body, either at depth or along strike to the west or east.

The authors of this report have verified and confirmed the information obtained from Dr. Conway and, where appropriate, have utilized this information in their interpretations and conclusions.
9.3 **Surface Sampling**

9.3.1 **Introduction**

Two styles of hydrothermal alteration and/or mineralization are seen on the property, namely:

1) Mainly float of white vuggy quartz veins that are locally stained with hematite-jarosite (Photo 9.2). These are mostly hosted by the schistose Weatherby Formation, although some of the faulted andesitic volcanics close to the Intermediate and Upper portals are also quartz veined. Assay results show this quartz veining is barren of gold and base metals (Table 9.1) and no further sampling of this rock type is recommended.

2) Fracture-controlled veins, stockworks and massive replacements of sulphide and sulfosalt mineralization (mostly tetrahedrite-tennantite with other Ag sulfosalt phases) that are commonly rhyolite-hosted or occupy rhyolite-andesite faulted or intrusive contacts. This Ag-rich ± Cu ± Zn ± Pb mineralization has been historically mined and is the main focus of Bayhorse Silver’s exploration and development work.

9.3.2 **Quartz Vein Sampling**

Minor quartz veining is observed outcropping in the vicinity of some faults around the Intermediate and Upper Adits, and elsewhere on the Bayhorse Property as float. Approximately, 1,310 to 1,640 ft (400 to 500 m) west of, and upslope from the Intermediate Portal, there is abundant float of quartz veins hosted by Weatherby Formation schistose meta-sediments. Locally the white quartz has crystal-lined vuggy cavities. The largest piece of float measured 13.8 inches by 7.9 inches (35 cm by 20 cm). No sulphides were noted, although some examples are heavily stained with jarosite and hematite indicating that sulphides may have been present at one time.

At UTM’s 482306E-4921749N and UTM 482388E-4921718N there are two very large bulldozed trenches up to 82 ft (25 m) long, 13 ft (4 m) deep and over 39.5 ft (12 m) in width. These trenches were put down to test the presence of gypsum but they did not reach bedrocks. However, there is yellow limonite-stained soil that contains numerous small (< 0.4 inch [1cm]) white quartz fragments. Grab samples GRBH-06, 10, 14, 15 and 16 of quartz vein float from various sampling locations around the Property were submitted for assay (Tables 9.1 and 9.2). These samples proved to be barren of precious and base metals; consequently, no further exploration of these veins is recommended.

9.3.3 **Silver-Rich Sulfosalt & Sulphide Surface Sampling**

Fracture-controlled Cu-oxide mineralization as either malachite, azurite or black Cu-Mn wad is common on surface in the vicinity of the Intermediate Portal, where it is hosted by both andesite and rhyolite. Surface sulfosalt (tetrahedrite-tennantite) mineralization with sphalerite, chalcopyrite, covellite and trace galena is seen as float in the rock dump at UTM 482542E-4922065N (Photo 9.3). It is also observed in several outcrops along the southern and northern faulted margins of a large rhyolite body that outcrops on the face of the Intermediate Portal. Apart from some rare Cu-oxides, no mineralization was seen in the vicinity of the Lower Adit which was westerly driven into Huntington andesitic rocks.
Surface exposures suggest that there is a strong spatial relationship between sulfosalt-sphalerite mineralization and rhyolite. On surface at least two modes of sulfosalt-sulphide mineralization are observed, namely (i) massive, 0.4 to 1.6 inches (1 to 4 cm) thick veins hosted by brittle faults that separate the rhyolite from andesite. This type is seen at face of the Intermediate Portal where bonanza silver grades up to 150 kg per tonne occur (Table 9.1) and, (ii) as narrow (<1.2 inch [3 cm]) fracture-controlled veins and stockworks that are entirely hosted by, or replace rhyolite. The sulfosalts are mostly dark grey to black, fine-grained and massive although some coarsely crystalline tetrhedrite-tennantite is seen locally. The sphalerite is low in Fe, being colorless to pale yellow (Leitch, 2013), which makes it difficult to identify with the naked eye, even though it can make up 20% of the veins.

Pyrite is uncommon and occurs as fine-grained disseminations and veinlets. Despite the Cu-oxides, only small amounts of chalcopyrite were identified. The sulfosalt mineralization is associated with silicification, thin quartz stringers, calcite-dolomite carbonate and minor sericite, chlorite and K-spar (Leitch, 2013).
Table 9.1 Assay results for twenty one hand grab surface samples collected by one of the authors from the Bayhorse Silver Mine property, November 2013. Anomalous values in red.

<table>
<thead>
<tr>
<th>Dump Samples</th>
<th>Method</th>
<th>ICP</th>
<th>ICP</th>
<th>ICP</th>
<th>ICP</th>
<th>ICP</th>
<th>ICP</th>
<th>ICP</th>
<th>ICP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SAMPLE</td>
<td>Ag</td>
<td>As</td>
<td>Au</td>
<td>Cd</td>
<td>Cu</td>
<td>Hg</td>
<td>Mo</td>
<td>Pb</td>
</tr>
<tr>
<td></td>
<td>No.</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
</tr>
<tr>
<td>GRBH-01</td>
<td>>100</td>
<td>391</td>
<td><0.2</td>
<td>170.5</td>
<td>227</td>
<td>38.8</td>
<td>0.92</td>
<td>2490</td>
<td>92.2</td>
</tr>
<tr>
<td>GRBH-02</td>
<td>>100</td>
<td>2310</td>
<td><0.2</td>
<td>280</td>
<td>>10000</td>
<td>43.2</td>
<td>4.27</td>
<td>2720</td>
<td>5600</td>
</tr>
<tr>
<td>GRBH-03</td>
<td>>100</td>
<td>5040</td>
<td><0.2</td>
<td>446</td>
<td>>10000</td>
<td>39.1</td>
<td>9.94</td>
<td>4830</td>
<td>>10000</td>
</tr>
<tr>
<td>GRBH-04</td>
<td>>100</td>
<td>324</td>
<td><0.2</td>
<td>82.8</td>
<td>251</td>
<td>13.3</td>
<td>3.16</td>
<td>1390</td>
<td>102</td>
</tr>
<tr>
<td>GRBH-05</td>
<td>>100</td>
<td>763</td>
<td><0.2</td>
<td>79</td>
<td>3390</td>
<td>10.8</td>
<td>1.19</td>
<td>1275</td>
<td>1340</td>
</tr>
<tr>
<td>GRBH-07</td>
<td>>100</td>
<td>7880</td>
<td><0.2</td>
<td>726</td>
<td>>10000</td>
<td>41.1</td>
<td>16.15</td>
<td>8070</td>
<td>>10000</td>
</tr>
<tr>
<td>GRBH-08</td>
<td>84.6</td>
<td>206</td>
<td><0.2</td>
<td>58.1</td>
<td>274</td>
<td>8.66</td>
<td>0.73</td>
<td>1510</td>
<td>106</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other Sulfosalt-bearing Samples</th>
<th>Method</th>
<th>ICP</th>
<th>Zn-OG46</th>
<th>Ag-OG46</th>
<th>Cu-OG46</th>
<th>Pb-OG46</th>
<th>Zn-OG46</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAMPLE</td>
<td>No.</td>
<td>ppm</td>
<td>ppm</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>ppm</td>
</tr>
<tr>
<td>GRBH-09</td>
<td>>10000</td>
<td>118</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.65</td>
</tr>
<tr>
<td>GRBH-11</td>
<td>>10000</td>
<td>902</td>
<td>1.165</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.39</td>
</tr>
<tr>
<td>GRBH-12</td>
<td>>10000</td>
<td>888</td>
<td>3.06</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.4</td>
</tr>
<tr>
<td>GRBH-13</td>
<td>>10000</td>
<td>176</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.095</td>
<td></td>
</tr>
<tr>
<td>GRBH-05</td>
<td>9400</td>
<td>197</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>GRBH-07</td>
<td>>10000</td>
<td>641</td>
<td>5.12</td>
<td>-</td>
<td>-</td>
<td>3.7</td>
<td></td>
</tr>
<tr>
<td>GRBH-08</td>
<td>>10000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.99</td>
<td></td>
</tr>
</tbody>
</table>

SAMPLE	Ag	As	Au	Cd	Cu	Hg	Mo	Pb	Sb	Zn	Ag-CON01**
No.	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
GRBH-09	>10000	4580	<0.2	282	>10000	116	8.82	2490	>10000		
GRBH-11	9.96	16.5	<0.2	12.25	79.7	1.23	1.51	853	18.55		
GRBH-12	10.4	29.5	<0.2	2.46	130	0.83	0.31	5270	39.4		
GRBH-13	>10000	5620	<0.2	280	>10000	91.6	5.14	2490	>10000		
GRBH-18	5.14	15	<0.2	1.91	14.1	0.65	0.43	>10000	13		
GRBH-19	>10000	>10000	<0.2	571	>10000	396	15.55	>10000	>10000		
GRBH-20	>10000	>10000	<0.2	606	>10000	474	26.9	>10000	>10000		
GRBH-21	>10000	474	<0.2	278	1810	31.8	1.18	2570	853		

Date: November 1, 2018
Table 9.1 Continued

Quartz Vein Float Samples

<table>
<thead>
<tr>
<th>SAMPLE No.</th>
<th>Ag ppm</th>
<th>As ppm</th>
<th>Au ppm</th>
<th>Cd ppm</th>
<th>Cu ppm</th>
<th>Hg ppm</th>
<th>Mo ppm</th>
<th>Pb ppm</th>
<th>Sb ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRBH-06</td>
<td>1.73</td>
<td>9.7</td>
<td><0.2</td>
<td>0.96</td>
<td>64.4</td>
<td>0.1</td>
<td>0.21</td>
<td>16.9</td>
<td>26.3</td>
</tr>
<tr>
<td>GRBH-10</td>
<td>5.79</td>
<td>22.8</td>
<td><0.2</td>
<td>2.08</td>
<td>154.5</td>
<td>0.35</td>
<td>0.39</td>
<td>24.1</td>
<td>69.3</td>
</tr>
<tr>
<td>GRBH-14</td>
<td>1.59</td>
<td>7.5</td>
<td><0.2</td>
<td>0.43</td>
<td>43.3</td>
<td>0.14</td>
<td>0.16</td>
<td>7.5</td>
<td>19.15</td>
</tr>
<tr>
<td>GRBH-15</td>
<td>9.23</td>
<td>11.3</td>
<td><0.2</td>
<td>0.85</td>
<td>39.1</td>
<td>0.43</td>
<td>0.57</td>
<td>17.8</td>
<td>20.3</td>
</tr>
<tr>
<td>GRBH-16</td>
<td>4.06</td>
<td>29.4</td>
<td><0.2</td>
<td>1.26</td>
<td>147</td>
<td>1</td>
<td>0.53</td>
<td>17</td>
<td>33.5</td>
</tr>
<tr>
<td>GRBH-17</td>
<td>0.66</td>
<td>3.8</td>
<td><0.2</td>
<td>0.18</td>
<td>10</td>
<td>0.02</td>
<td>0.35</td>
<td>4.5</td>
<td>2.33</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SAMPLE No.</th>
<th>Zn ppm</th>
<th>Ag ppm</th>
<th>Cu ppm</th>
<th>Pb ppm</th>
<th>Zn ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRBH-06</td>
<td>151</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>GRBH-10</td>
<td>104</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>GRBH-14</td>
<td>13</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>GRBH-15</td>
<td>29</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>GRBH-16</td>
<td>84</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>GRBH-17</td>
<td>27</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

* ICP - ME-MS41 ICP analysis following Aqua Regia digestion
** OG46 – “ore grade” analysis on over-limit ICP results (Ag-CON01 is an analysis on over-limit Ag-OG46 results)

Photo 9.3 Silicified and altered rhyolite (brown and pink) cut by fracture-controlled tetrahedrite-tennantite-rich stockwork veins (dark).
Table 9.2 Descriptions And Locations For The Rock Grab Samples Collected By G.E. Ray in November 2013 (Ray, 2015).

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>East UTM NAD83</th>
<th>North UTM NAD83</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfosalt-rich float samples from historic rock dump</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRBH-01</td>
<td>482542</td>
<td>4922065</td>
<td>Pink rhyolite w 1 cm tetrahe drite-tennantite-sphalerite veins & Cu oxides</td>
</tr>
<tr>
<td>GRBH-02</td>
<td>482542</td>
<td>4922065</td>
<td>Rhyolite w 0.5 cm sulfosalt-sphalerite veins & Cu oxides</td>
</tr>
<tr>
<td>GRBH-03</td>
<td>482542</td>
<td>4922065</td>
<td>Rhyolite w sulfosalt-sphalerite veins & Cu oxides</td>
</tr>
<tr>
<td>GRBH-04</td>
<td>482542</td>
<td>4922065</td>
<td>Rhyolite w 2 cm sulfosalt-sphalerite veins & Cu oxides</td>
</tr>
<tr>
<td>GRBH-05</td>
<td>482542</td>
<td>4922065</td>
<td>Scalloped pink rhyolite w 2 cm sulfosalt veins & Cu oxides</td>
</tr>
<tr>
<td>GRBH-07</td>
<td>482542</td>
<td>4922065</td>
<td>Composite float samples strong sulfosalt-sphalerite mineralization</td>
</tr>
<tr>
<td>GRBH-08</td>
<td>482542</td>
<td>4922065</td>
<td>Silica-sulfosalt-sphalerite veining w minor pyrite & Cu oxides</td>
</tr>
<tr>
<td>Sulfosalt-bearing samples from elsewhere on the property</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRBH-09</td>
<td>482526</td>
<td>4921957</td>
<td>o/c andesite tuff w fracture-controlled sulfosalt-sphalerite & Cu oxides</td>
</tr>
<tr>
<td>GRBH-11</td>
<td>482512</td>
<td>4921968</td>
<td>o/c of faulted silicified rhyolite w hematite-jarosite & minor Cu oxides</td>
</tr>
<tr>
<td>GRBH-12</td>
<td>482491</td>
<td>4921926</td>
<td>o/c silicified rhyolite w crackle breccia. Sulfosalt veins & trace Cu oxides</td>
</tr>
<tr>
<td>GRBH-13</td>
<td>482556</td>
<td>4921890</td>
<td>o/c decline adit. Silicified rhyolite w sulfosalt-sphalerite-galena</td>
</tr>
<tr>
<td>GRBH-18</td>
<td>482431</td>
<td>4921908</td>
<td>o/c. Silicified rhyolite w qtz sulfosalt-galena veining</td>
</tr>
<tr>
<td>GRBH-19</td>
<td>482545</td>
<td>4921935</td>
<td>o/c 4 cm vein massive sulfosalt-sphalerite-galena w Cu oxides, Intermediate Portal</td>
</tr>
<tr>
<td>GRBH-20</td>
<td>482545</td>
<td>4921935</td>
<td>o/c 4 cm vein massive sulfosalt-sphalerite-galena w Cu oxides, Intermediate Portal</td>
</tr>
<tr>
<td>GRBH-21</td>
<td>482545</td>
<td>4921935</td>
<td>Float silicified rhyolite w sulfosalt-sphalerite stockworks. Intermediate Portal</td>
</tr>
<tr>
<td>Float samples of white barren quartz vein material</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRBH-06</td>
<td>482542</td>
<td>4922065</td>
<td>Schistose meta-seds cut by thin (0.4 cm) white quartz veins</td>
</tr>
<tr>
<td>GRBH-10</td>
<td>482063</td>
<td>4921937</td>
<td>Float white vuggy quartz veins w minor calcite & Fe oxides</td>
</tr>
<tr>
<td>GRBH-14</td>
<td>482063</td>
<td>4921837</td>
<td>Composite white vuggy quartz vein material from 6 pieces of float</td>
</tr>
<tr>
<td>GRBH-15</td>
<td>482063</td>
<td>4921837</td>
<td>Composite float rusty schistose m-seds & qtz stringers in trench</td>
</tr>
<tr>
<td>GRBH-16</td>
<td>482388</td>
<td>4921718</td>
<td>Faulted o/c of jarosite-stained fissile meta-seds w vuggy qtz stringers</td>
</tr>
</tbody>
</table>
During a November 2013 visit to the property, one of the co-authors (G.E. Ray), collected twenty-one (21) rock grab samples (GRBH-01 to GRBH-21). These included seven (7) sulfosalt-bearing samples from the historic rock dump at UTM 482542E-4922065N, eight (8) from mineralized outcrops and float elsewhere, close to, and west of, the Intermediate Portal, and a further six (6) of what proved to be barren quartz vein float. These were submitted to the certified ALS Chemex Laboratory in Elko, NV. The samples descriptions and assay results are provided in Tables 9.1 and 9.2.

Regarding these assay results in Table 9.1 it should be noted that there was sample bias as, apart from the barren quartz vein float, all the other samples were selected because they contained visible sulphide, sulfosalt and/or Cu-oxide mineralization. Consequently, the reader is cautioned that due to sample bias the results in Table 9.1 are not reliable for determining metal grades on the property. However, they do show that the Bayhorse mineralization contains impressive quantities of Ag, Cu, Zn and Pb which encourages further exploration. Other points noted from the assay results are:

1) The six (6) samples of quartz vein float contained no significant quantities of precious or base metals; no further exploration of these veins is recommended.

2) Of the fifteen (15) hand samples taken with visible sulfosalt, sphalerite or Cu oxide mineralization, eleven (11) assayed >2.92 oz/t (100 ppm) Ag of which two contained >29.17...
oz/t (1,000 ppm) Ag and another two yielded spectacular bonanza values of 88 kg and 150 kg silver per tonne respectively (Table 9.1).

3) Many of the silver-rich samples contain enhanced amounts of Cu (maximum 17.8 %), Pb (maximum 1.2 %) and Zn (maximum 8.9 %).

4) Many samples have moderate to high quantities of As and Sb, with maximums of >291.67 oz/t (10,000 ppm).

5) Bismuth values were low (maximum 0.016 oz/t (0.56 ppm)).

6) There are some anomalous values in Hg (up to 2.654 oz/t [91 ppm]) and Se (maximum 0.642 oz/t [22 ppm]).

7) There are also weakly anomalous values in Mo (maximum 0.758 oz/t [26 ppm]), Re (maximum 0.029 oz/t [0.999 ppm]), Cd (maximum 17.675 oz/t [606 ppm]) and Co (up to 3.938 oz/t [135 ppm]).

8) The mineralization contains only trace to low amounts of V, W and Sn.

The assay results suggest a strong correlation exists between Ag and base metals such as Zn, Cu and Pb, and the high Sb values indicate the presence of tetrahedrite as well as As-bearing tennantite.

Recent polished section petrography studies (Leitch, 2013) indicate that some of the sulfosalts-sulphide-rich samples contain up to 20% sphalerite and 50% sulfosalts minerals. The latter includes at least three unidentified varieties, including tennantite-tetrahedrite. Also present is possible acanthite (Ag2S), with minor galena and chalcopyrite, together with covellite and malachite.

9.3.4 Underground sampling

After acquiring the property, Bayhorse Silver Inc. conducted an underground sampling program, mainly on the Intermediate Level. This included sampling the Legend Zone, parts of the haulage ways, as well as the Big Dog and Sunshine stopes (Photos 9.4 and 9.5). This program involved the collection of selected grab, chip, channel and long hole samples. It should be noted that the Bayhorse assay data presented in this report are from selective mineralization based sampling and therefore there is some sample bias in the collection of the chip, channel and grab samples and they are not necessarily representative of the entire mineralization hosted on the property. However, the assays do compare favorably with base and silver metal sampling historically reported from this zone by Cordex (1976) and others (Full, 1959).

Select assay results from the chip and channel sampling program completed by the Company in February 2018 and announced in News Release (BHS2018-04) are presented below in Table 9.3. These samples were collected in the newly discovered Legend Zone, the Big Dog Stope, and the raise leading up to the Sunshine Stope. The authors of this report have validated and confirmed the majority of these results with their own sampling.
Photo 9.4 South-dipping curvilinear contact between Huntington andesite (above) and mineralized rhyolite (below). Looking east close to the entrance to the Big Dog Stope.

Photo 9.5 High-grade silver-copper bearing massive stockwork mineralization hosted by brecciated rhyolite, Big Dog Stope. The width of the photo is approximately 3.3 ft (1 m).
Table 9.3 Assay results for Ag, Cu and Zn from the Legend, Big Dog and raise leading to the Sunshine Stope.

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Sample type</th>
<th>Ag oz/t</th>
<th>Ag g/t</th>
<th>Cu %</th>
<th>Zn %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Channel sample, Legend Zone</td>
<td>400.69</td>
<td>13,738</td>
<td>7.85</td>
<td>10.99</td>
</tr>
<tr>
<td>2</td>
<td>Chip, Big Dog Stope</td>
<td>68.38</td>
<td>2,344</td>
<td>3.63</td>
<td>1.89</td>
</tr>
<tr>
<td>3</td>
<td>Chip, raise</td>
<td>35.55</td>
<td>1,219</td>
<td>1.22</td>
<td>0.72</td>
</tr>
<tr>
<td>4</td>
<td>Chip, raise top</td>
<td>20.48</td>
<td>702</td>
<td>1.30</td>
<td>6.60</td>
</tr>
<tr>
<td>5</td>
<td>Chip, middle shaft</td>
<td>23.98</td>
<td>822</td>
<td>0.99</td>
<td>0.28</td>
</tr>
<tr>
<td>6</td>
<td>Chip, upper raise</td>
<td>20.22</td>
<td>693</td>
<td>2.07</td>
<td>2.64</td>
</tr>
<tr>
<td>7</td>
<td>Chip, Legend Zone top</td>
<td>4.86</td>
<td>167</td>
<td>2.64</td>
<td>5.24</td>
</tr>
<tr>
<td>8</td>
<td>Chip, Legend Zone bottom</td>
<td>17.00</td>
<td>583</td>
<td>0.49</td>
<td>0.76</td>
</tr>
<tr>
<td>9</td>
<td>Chip, Legend Zone top west</td>
<td>1.51</td>
<td>52</td>
<td>0.03</td>
<td>0.23</td>
</tr>
<tr>
<td>10</td>
<td>Chip, Legend Zone west</td>
<td>2.41</td>
<td>83</td>
<td>0.03</td>
<td>0.32</td>
</tr>
</tbody>
</table>

It should be noted that the 400.69 oz/t (13,738 ppm) Ag assay came from an 8 inch by 30 inch (20 by 76 cm) channel sample across a 5 foot (1.5 m) wide zone in the center of the 65 foot (20 m) wide mineralized Legend Zone.

In a March 6, 2018, News Release (BHS2018-06) the Company reported the results of additional assay sampling of the historic Sunshine and Big Dog stopes and the Legend Zone. One chip sample was collected from the Legend Zone, one grab sample from the Big Dog Stope, and six selected samples of blasted rock were collected from the Sunshine Stope. In addition to the anticipated high silver values, the assays revealed the presence of up to 0.048 oz/t (1.66 ppm) gold which supports historic reports of minor gold being present in the Bayhorse mineralization. The assay results of the eight samples are listed below in Table 9.4. The locations of the samples summarized in Tables 9.3 and 9.4 are shown in Figure 9.2.

Table 9.4 Assay results for Au, Ag and Cu from the Sunshine, Big Dog and Legend Zones.

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Sample Type</th>
<th>Au g/t</th>
<th>Ag oz/t</th>
<th>Ag g/t</th>
<th>Cu %</th>
</tr>
</thead>
<tbody>
<tr>
<td>(11)</td>
<td>Grab of 5 cm vein Legend Zone</td>
<td>0.02</td>
<td>683.81</td>
<td>23,445</td>
<td>13.95</td>
</tr>
<tr>
<td>(12)</td>
<td>Select blasted rock Sunshine raise</td>
<td><0.02</td>
<td>167.28</td>
<td>5,735</td>
<td>2.89</td>
</tr>
<tr>
<td>(13)</td>
<td>Select blasted rock Sunshine raise</td>
<td><0.02</td>
<td>154.83</td>
<td>5,308</td>
<td>2.43</td>
</tr>
<tr>
<td>(14)</td>
<td>Select blasted rock Sunshine raise</td>
<td><0.02</td>
<td>84.94</td>
<td>2,912</td>
<td>6.60</td>
</tr>
<tr>
<td>(15)</td>
<td>Select blasted rock Sunshine raise</td>
<td>1.66</td>
<td>64.49</td>
<td>2,211</td>
<td>0.92</td>
</tr>
<tr>
<td>(16)</td>
<td>Select blasted rock Sunshine raise</td>
<td>0.88</td>
<td>58.70</td>
<td>2,013</td>
<td>5.24</td>
</tr>
<tr>
<td>(17)</td>
<td>Select blasted rock Sunshine raise</td>
<td>0.02</td>
<td>39.54</td>
<td>1,356</td>
<td>2.35</td>
</tr>
<tr>
<td>(18)</td>
<td>Grab sample Big Dog Stope</td>
<td>0.29</td>
<td>32.85</td>
<td>1,126</td>
<td>0.29</td>
</tr>
</tbody>
</table>

In a later News Release dated the 18th of August 2018 (BHS2018-24) the Company announced it had collected a number of grab and chip samples from the well mineralized Big Dog Stope and
many showed high quantities of Ag, Cu, Zn, and Pb, with one sample assaying 0.035 oz/t (1.2 ppm) gold. These samples were taken from the eastern end of the newly opened 550 ft (168 m) portion of the “west workings” of the Intermediate Level. The assay results for these 7 samples are shown in Table 9.5 and in Figure 9.3 below. The authors of this report have validated and confirmed the majority of these results with their own sampling as discussed in Section 12 below.

Table 9.5 Precious and base metal assay results of samples collected from the Big Dog Stope.

<table>
<thead>
<tr>
<th>Sample No</th>
<th>Sample Type</th>
<th>Au g/t</th>
<th>Ag oz/t</th>
<th>Ag g/t</th>
<th>Cu %</th>
<th>Zn %</th>
<th>Sb %</th>
<th>Pb %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Grab</td>
<td>1.2</td>
<td>73.00</td>
<td>2502.86</td>
<td>2.15</td>
<td>2.16</td>
<td>1.31</td>
<td>0.3</td>
</tr>
<tr>
<td>2</td>
<td>Chip</td>
<td>-</td>
<td>18.50</td>
<td>634.29</td>
<td>3.21</td>
<td>1.39</td>
<td>1.70</td>
<td>1.64</td>
</tr>
<tr>
<td>3</td>
<td>Chip</td>
<td>-</td>
<td>27.00</td>
<td>925.71</td>
<td>6.00</td>
<td>2.19</td>
<td>3.23</td>
<td>2.26</td>
</tr>
<tr>
<td>4</td>
<td>Chip</td>
<td>-</td>
<td>19.50</td>
<td>668.57</td>
<td>4.44</td>
<td>1.91</td>
<td>2.43</td>
<td>1.94</td>
</tr>
<tr>
<td>5</td>
<td>Grab</td>
<td>-</td>
<td>56.20</td>
<td>1926.86</td>
<td>1.62</td>
<td>1.52</td>
<td>1.01</td>
<td>1.14</td>
</tr>
<tr>
<td>6</td>
<td>Grab</td>
<td>-</td>
<td>32.50</td>
<td>1114.29</td>
<td>5.56</td>
<td>2.07</td>
<td>3.11</td>
<td>3.07</td>
</tr>
<tr>
<td>7</td>
<td>Chip</td>
<td>-</td>
<td>5.28</td>
<td>181.03</td>
<td>2.00</td>
<td>1.96</td>
<td>0.75</td>
<td>1.51</td>
</tr>
</tbody>
</table>

Figure 9.2 Early 2018 Underground Samples from Tables 9.3 and 9.4.

On September the 10th, 2018 the Company posted a News Release (BHS2018-28) announcing the preliminary results that involved the collection of sixty (60) channel samples from the westerly end of the main haulage way on the Intermediate Level. Of these, assay results for 26 samples have been received. In addition, a 30 kg metallurgical sample was collected for which the assay results are pending.
The Company has currently embarked on a channel sampling program in the historical “Western Workings” with channel samples, each measuring 2.4 ft (0.66 m) by 6 inches (0.2 m), which are being collected on 10 ft (~3 m) centers with three components; from the back, the left and right ribs for each sample site. All are from the historical (1984) ‘West Workings’ of the Intermediate Level that were developed by Silver King Mines in 1984 and have been recently accessed by the new 2018 haulage drift (highlighted blue in Figure 9.2). Results of the initial sampling are presented in Table 9.6 below.

Table 9.6 Silver assay results of 26 channel samples taken from the westerly end of the main haulage way, Intermediate Level.

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Ag g/t</th>
<th>Ag oz/ton</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 S8B</td>
<td>70.97</td>
<td>2.07</td>
</tr>
<tr>
<td>2 S8RR</td>
<td>57.94</td>
<td>1.69</td>
</tr>
<tr>
<td>3 S9B</td>
<td>192.69</td>
<td>5.62</td>
</tr>
<tr>
<td>4 S14RR</td>
<td>414.86</td>
<td>12.1</td>
</tr>
<tr>
<td>5 S14B</td>
<td>193.37</td>
<td>5.64</td>
</tr>
<tr>
<td>6 S14LR</td>
<td>3,936.00</td>
<td>114.8</td>
</tr>
<tr>
<td>7 S15LR</td>
<td>918.86</td>
<td>26.8</td>
</tr>
<tr>
<td>8 S15B</td>
<td>117.26</td>
<td>3.42</td>
</tr>
<tr>
<td>9 S15RR</td>
<td>103.89</td>
<td>3.34</td>
</tr>
<tr>
<td>10 S16LR</td>
<td>27.36</td>
<td>0.798</td>
</tr>
<tr>
<td>11 S16B</td>
<td>83.66</td>
<td>2.44</td>
</tr>
<tr>
<td>12 S16RR</td>
<td>25.61</td>
<td>0.747</td>
</tr>
<tr>
<td>13 S18B</td>
<td>144.00</td>
<td>4.2</td>
</tr>
<tr>
<td>14 S18LR</td>
<td>702.86</td>
<td>20.5</td>
</tr>
<tr>
<td>15 S18RR</td>
<td>67.20</td>
<td>1.96</td>
</tr>
<tr>
<td>16 S19RR</td>
<td>151.54</td>
<td>4.42</td>
</tr>
<tr>
<td>17 S19</td>
<td>589.71</td>
<td>17.2</td>
</tr>
<tr>
<td>18 S19LR</td>
<td>497.14</td>
<td>14.5</td>
</tr>
<tr>
<td>19 Extra Split #1</td>
<td>204.00</td>
<td>5.95</td>
</tr>
<tr>
<td>20 Extra Split #2</td>
<td>156.00</td>
<td>4.55</td>
</tr>
<tr>
<td>21 Winze-1 LR</td>
<td>10,731.42</td>
<td>313</td>
</tr>
<tr>
<td>22 Winze-2 RR</td>
<td>270.17</td>
<td>7.88</td>
</tr>
<tr>
<td>23 W-3 South End LR Under Brow</td>
<td>132.69</td>
<td>3.87</td>
</tr>
<tr>
<td>24 W-4 South End RR Under Brow</td>
<td>202.63</td>
<td>5.91</td>
</tr>
<tr>
<td>25 W-5 Raise</td>
<td>99.43</td>
<td>2.9</td>
</tr>
<tr>
<td>26 W-6 Raise</td>
<td>260.91</td>
<td>7.61</td>
</tr>
</tbody>
</table>

To compliment the channel samples, the Company is also conducting a long holes drilling program. A series of long holes on fifteen (15) foot (~5 m) centers are being drilled along a 200 ft (60 m) length of the haulage way, commencing at the first channel sample location. The long holes have a maximum length of 30 ft (~10 m) and are being completed using a Jackleg drill. The
long hole pattern of holes consists of one vertical hole, one angled 70 degrees in a southwesterly direction on the left rib along the haulage way, and one at 70 degrees northeasterly into the right rib. Sample cuttings are being collected at 3 ft (~1 m) intervals to be submitted for assay. Both the channel samples and long holes are for comparison in this area with historically reported and mined material; the mined material included both high and low grade material in a mineralized zone reported as averaging 20 ft (~6 m) in thickness.

The assay results for the 26 channel samples discussed in the Company's New Release BHS2018-28 are summarized above in Table 9.6. The locations of these samples, along with the seven Big Dog Stope samples summarized in Table 9.5, are illustrated in Figure 9.3. The results of this work have been largely confirmed by samples collected by the authors of this Technical Report with the results discussed in Section 12 below.

Assaying for all of the underground samples reported above was completed by American Analytical Services Laboratories in Osburn, Idaho. For silver assays, the samples were subjected to fire assay with a gravimetric finish, while the base metals were subjected to an inductively coupled plasma mass spectrometry (ICP) 35 element geochemical assay. Over limit values for the base metals were followed up with "Ore Grade" assaying techniques using Atomic Absorption (AA).

9.4 Sampling Method and Approach

The surface and underground rock grab sampling that has been completed to date by, or on behalf of, Bayhorse Silver has been conducted primarily to characterize the mineralized material observed and to provide Ag analyses (plus Cu, Pb and Zn values) in order to investigate the relationship between observed mineralization and approximate silver contents. This is deemed appropriate by the authors of this report as Bayhorse and its consulting geologists gained familiarity with the Property and its mineralization. Any sample bias associated with “grab” sampling of mineralization is not considered important as a) no effort was made by any of the samplers to selectively sample high-grade material, and b) the majority of these samples were not incorporated into the underground database for use in quantitative analysis of the deposit as a whole (i.e. resource estimation). The recent Bayhorse samples incorporated into the resource estimation assay database comprised primarily chip-channel samples, thus providing information regarding grade over a specified sample length. The few underground grab samples that were incorporated into the resource estimation assay database comprised materials collected directly from the walls of the workings and were investigated and deemed representative by the authors of this report during their respective recent site visits.
Figure 9.3 2018 Underground Samples from Tables 9.5 and 9.6.
10.0 DRILLING

There is no evidence that any significant historic drilling has been conducted on surface at the Bayhorse Mine Property. In 1984, Silver King Mines Inc. completed a number of underground drillholes, perhaps in excess of 200 holes, along with channel sampling. As access is gained to the western workings, the Company hopes to confirm the historic underground drillhole locations.

Bayhorse has not conducted any drilling on the Property, other than some long hole work ahead of development, however, the Company is planning to conduct a significant underground drill program in the future.

11.0 SAMPLING PREPARATION, ANALYSES AND SECURITY

There is very limited information available regarding the sampling techniques, preparation, or analytical methods used during the historical 1920's and 1980's exploration, including those used for the channel sample and drill-core assays shown in Figures 6.2 and 6.3. However, Wise (1984) provides a number of hand drawn sketch maps with silver values in ounces per ton along with drill sections and a number of hand written mine site laboratory sheets from one of Silver Kings operating mine site laboratories. A number of these samples sheets certify some of the channel sampling and drillhole sampling data at Bayhorse, although the metadata is not sufficient to ascertain techniques of preparation and assay. A certain amount of reruns are evident and were conducted sporadically. The work typifies the laboratory and exploration work of the era.

11.1 Bayhorse Surface Sampling

In 2013, twenty-one (21) litho-geochemical rock grab samples containing visible sulphide and sulfosalt mineralization (15) or barren quartz vein material (6) and weighing 1 to 1.5 kg each were collected by one of the co-authors (Ray, 2015). The samples were placed in clean plastic sample bags and held by the coauthor in safe storage until they were dispatched. These were securely delivered via UPS shipment to the ALS Chemex Laboratories (ALS Chemex) at 2056 Last Chance Rd, Elko, NV 89801. ALS Laboratory Group's Mineral Division, ALS Chemex, has developed and implemented a Quality Management System (QMS) designed to ensure the production of consistently reliable data. The system covers all laboratory activities and takes into consideration the requirements of ISO standards. The QMS operates under global and regional Quality Control (QC) teams responsible for the execution and monitoring of ALS Chemex's various Quality Assurance (QA) and Quality Control programs in each department, on a regular basis. Audited both internally and by outside parties, these programs include proficiency testing of a variety of parameters, ensuring that all key methods have standard operating procedures (SOPs) that are in place and being followed properly, and ensuring that quality control standards are producing consistent results. Most of ALS Chemex laboratories worldwide are registered or are pending registration to ISO 9001:2000, and a number of analytical facilities have received ISO 17025 accreditations for specific laboratory procedures.
Bayhorse Silver Inc., is independent from, and has no financial interest or holdings with either the ALS Laboratory Group or American Analytical Services Labs. Bayhorse Silver’s relationship with ALS and AASL is that of an independent paying customer requiring reliable and meticulous assay work.

The submitted samples were crushed in a jaw crushe and then crushed further in a hammer mill. They were then split to obtain a 100 gram “sub-fraction” which was then pulverized in a ring pulverizer. A 50 gram sample weight was digested with aqua regia and most elements were determined via ME-MS 41 coded methods. Over-limits for some metal elements were determined using the following methods; Cu: Cu-OG46; Pb: Pb-OG46; Zn: Zn-OG46 and Ag: Ag-GRA21 and AG-CON01.

11.2 Bayhorse Underground Sampling

The underground rock grab and chip-channel sampling that has been completed to date by, or on behalf of, Bayhorse Silver has been conducted primarily to characterize the mineralized material observed, and in order to confirm and verify areas of historic mining and channel sampling underground. The recent Bayhorse samples incorporated into the resource estimation assay database comprised primarily chip-channel samples, thus providing information regarding grade over a specified sample length.

Current sampling being conducted by the Company includes chip-channel sampling at regular intervals along the ribs and back of the recently re-opened ‘West Workings’ of the Intermediate Level (see Figure 9.3). In addition, short 20 to 30 ft (~6 to 9 m) jackleg holes are being drilled into the ribs of the ‘West Workings’ at a lateral spacing of about 15 ft (~5 m) with the ejected rock chips from these holes being sampled every 3 ft (~1 m) as the hole is advanced. In order to prevent sample to sample contamination the drillers are pausing to clean the hole at the end of each sample run. This work is ongoing and a number of assays are still pending. In addition, Bayhorse is in the process of identifying an easily portable underground core drill that will allow for the drilling and testing of larger areas around the ‘West Workings’ to allow for revised resource estimations in the future. In the opinion of the authors of this report, the sampling approach being applied by the Company is sufficient for the intended use of the samples.

The underground chip, channel, grab and long hole samples collected by Bayhorse Silver Inc. staff and consultants were placed in clean plastic, cloth or woven sack bags and kept in a locked, secure storage area that was protected from the weather. When a sufficient number of samples accumulate, they are dispatched securely to the American Analytical Services Labs in Osburn, Idaho (AAS Labs) where they are processed and analysed. The samples there are crushed and homogenized and a 250g split id pulverized to 80mesh. A 30g aliquot of the pulp are sent for a standard 30g (1 Assay-ton) fire assay and a 1 g aliquot is sent for a multi-element (35) ICP geochemical analysis following a 4-acid (near total) digestion. Prior to August 2018 and the commencement of sampling in the newly re-opened ‘West Workings’, samples were analysed by a 15 g (1/2 Assay-ton) fire assay and multi-element (35) ICP geochemical analysis following aqua regia (partial) digestion. The change in ICP digestion is not considered significant due to the prevalence of Ag-sulfosalt mineralization within the deposit, which is digestible by aqua regia. The change was made in order to make sure that all sulphide minerals are digested, including any sphalerite present.

Date: November 1, 2018

APEX Geoscience Ltd.
12.0 DATA VERIFICATION

There is little to no information available regarding data verification techniques used by the historic mining and exploration companies during the 1920’s and 1970’s to 1980’s.

12.1 Historical Data

This Technical Report presents a maiden inferred mineral resource estimate for the Bayhorse Silver Deposit. The geological modeling and resource estimation details are provided in Section 14 of this report. In summary, the inferred mineral resource relies heavily upon historical data. Specifically, the extent of the historical workings that comprise the Bayhorse Mine, together with historical mining and sampling data, were used as the basis for modeling the deposit and the majority of the analytical data that was used to assign grade to the block model came from historical analytical data.

In preparation for geological modeling, the authors completed an extensive review of the historical underground sampling and mining data along with a number of historical mining reports for the Bayhorse Mine. The reviewed documents included numerous detailed maps and descriptions of the mine workings, particularly for the Intermediate, Upper and Lower Level workings. As a result of the consistency in this information, along with the current extent of Bayhorse’s new workings the authors was able to quickly conclude that the extents of the Intermediate, Upper and Lower Level workings were substantially accurate and complete. Portions of the Intermediate (or Mid) Level workings, largely the western extent completed in the 1980’s Silver King, were less well documented. In particular, the link between the far west workings and the Big Dog stope remained uncertain. Through the careful compilation of various data sources and numerous partial maps, the authors were able to construct a 3-dimensional (3-D) model for the Mid Level workings. Fortunately, in mid-August, Bayhorse completed a breakthrough from its new Mid Level haulage-way into the historical Mid Level haulage-way that was constructed by Silver King. One of the co-authors, Mr. Andrew Turner, B.Sc., P.Geol., P.Geo. an independent consulting geologist and Principal with APEX, was present as this breakthrough occurred and was able to examine the extents of the historical Mid Level workings from the Big Dog stope to the far west end of the old Silver King haulage level. The result of this underground examination was the confirmation of the 3-D model that the authors had compiled for the Mid Level workings. As a result, the authors were able to conclude that the 3-D model for the historical workings at the Bayhorse mine was substantially complete, accurate and suitable for geological modelling and mineral resource estimation work. The lack of any substantial verification data, including QAQC data for the historical analytical data, has been taken into account in the categorization of the mineral resources in Section 14 below.

With the exception of the Lower Level, geological maps for the historical Bayhorse workings are rare and/or lacking in detail. As a result, the more abundant assay data was used as a proxy for determining the extent of mineralization throughout the mine. The historical data and maps reviewed by APEX included numerous production drawings and sketches that were prepared during the historical mining work and included detailed “round assays”. These round assays represent composite grab samples that were collected by the miners from the muck piles that resulted from each blast round as headings were advanced. For example, Figure 12.1 shows the round assays for the 120 and 150 cross-cuts above the 210 and 250 raises, which are part of the
western Mid Level workings above the historical haulage-way. The individual rounds are numbered and their respective round Ag assay values are written beside each round. APEX digitized all of the round assay maps that were legible and that could be accurately located. For the purpose of resource estimation, each round assay was treated as a single sample drillhole running through the center of each drift between the start and end of each round. Hand written Silver King Mines assay certificates were available for all the 1984 drill round assays, drill hole assays, chip-channel sample assays and numerous production material assays allowing verification of much of the 1984 results. Limited assay certificates were available for the 1976 Cordex work and no certificates were available for the 1920’s to 1950’s work.

In addition to round assay data, several rib sample maps were found for various parts of the Bayhorse Mine. An example of one such maps is provided in Figure 12.2, which illustrates a rib sample location map of the Big Dog Stope and surrounding workings in the Intermediate Level of the Bayhorse Mine. The map illustrated is a copy of the original sample location map drawn by Doler (1976) after conducting a mapping and sampling effort in this part of the mine under Cordex work. Several such sampling efforts were identified at the Big Dog Stope and the compiled analytical data for Ag (values in opt) is presented above in Figure 6.2. As a result of the extensive historical data compilation effort completed by APEX, a database largely comprising historical round assays and rib channel samples was compiled and it was concluded that the data was suitable for use in the geological modeling and resource estimation effort discussed in section 14 of this report. The historical nature of the data

It should be noted that, with the exception of a number of analytical certificates/reports for Ag assays completed in the 1970s and 1980s, there is very little information available documenting the sample collection, preparation and analytical details for the a number of the historical Ag assays compiled within the historical assay database. This is one of the principle reasons as to why the maiden mineral resource estimate for the Bayhorse deposit was classified as an inferred mineral resource in Section 14.

12.2 Recent Work By Bayhorse Silver

Upper Workings

During this past eighteen months, Bayhorse opened the upper adit into the Sunshine Zone by drifting 120 ft (35 m) into the zone from the portal entrance, widening the historic drift to permit modern equipment access. On the north side of the drift a north dipping mineralized rhyolite vein approximately 24 to 30 inches wide was encountered parallel to the historic workings. The miners followed standard mining practice by split shooting the drift to minimize dilution. Sampling was conducted every 10 ft along the north rib and the back of the drift from 40 ft to 120 ft.

Intermediate Workings

In 2016, 270 feet in from the main haulage-way portal, rehabilitation work was commenced 50 feet underneath the Junction Zone. A raise had been driven up into the Junction Zone and the back had collapsed in to the haulage-way. During rehabilitation, approximately 300 tons of mineralized rhyolite was excavated along 50 ft of drift below the Junction Zone above. A total of 15 samples were collected from the face as the excavation proceeded and from the excavated muck pile and submitted for assay. A total of 10 of the 15 samples yielded >1 oz/t Ag.
A new 700 ft haulage-way was driven from 230 feet inside the mine to bypass the 1984 haulage-way, that was considered unsafe to rehabilitate. At 500 ft along the haulage-way, an I drift and raise was driven up into a historic drift that was driven in 1984 and mineralized rhyolite samples were collected from the rhyolite at the top of the raise. The new haulage-way was extended a further 250 ft and intersected the historic 1984 workings 200 feet to the west of the Big Dog Stope. This area was in good condition and extended another 200 feet to the west, and rehabilitated.

Samples were collected from the east end of the Big Dog Zone to the extreme western end of the 1984 Silver King workings. The samples comprised channel samples collected on 10 foot centers over a 200 foot section at the westerly end of the workings, along with chip, and grab samples collected at the eastern 200 feet of the historic workings. A total of 83 samples were collected and assayed, of which 87% graded >1 oz/t Ag.
At 170 ft in from the main Intermediate Level portal, Bayhorse drove a 150 ft drift to the north, terminating underneath the reopened Upper Level entrance way. A 50 foot raise to the upper level was driven to connect the two levels with the purpose of establishing a secondary escapeway. Altered andesite was encountered over 50 ft, that contained rhyolite stringers. This was named the Legend Zone. The alteration extended upwards in the secondary raise to the Upper “Sunshine Level”. Samples were collected along the drift and up the raise. Samples along the drift were collected at 24 ft intervals and up the raise at 10 ft intervals. An I drift was run from the center of the north drift to the south at a location that yielded significant silver grades. A total of 35 samples were collected from the Legend Zone and the secondary escapeway of which 63% graded >1 oz/t Ag.
Lower Adit

The lower adit portal was cleared and 800 feet of open drift, that was driven in the early 1900’s was accessed and reviewed as a potential tertiary escapeway. In the 1920’s, a raise from this lower level was driven up 75 feet into the track level of the Big Dog (Intermediate Level) workings. The top of the raise was blocked. A mineralized structure approximately 3ft to 5 ft wide was evident from the bottom to the top of the raise. A total of five samples were collected from the muck pile at the bottom of the raise, and across the mineralized structure. All five samples yielded assays >5 oz/t Ag.

Sampling

In total, over 250 samples have been collected by Bayhorse personnel from the historic workings and in new workings opened up by Bayhorse. Samples have been collected at the 800 ft Lower Level, the 1,000 ft main, Intermediate Level workings, and the exposed 120 ft of the Sunshine (Upper Level) workings. The samples collected include chip, grab, channel and long hole samples. A number of the hand collected samples were elective in nature.

Samples were submitted to Metsolve Labs, Langley, BC, Christopherson Umpire Assayer, and to American Analytical Labs, Osburn, Idaho. A total of 69 of the samples collected by Bayhorse have yielded grades in excess of 32 oz/t Ag up to 4,835 oz/t Ag.

The underground chip, channel, grab and long hole samples collected over the last four years by Bayhorse Silver Inc., staff were placed in clean plastic, cloth or woven sack bags and kept in a locked, secure storage area that was protected from the weather. When a sufficient number of samples had accumulated they were despatched securely to the American Analytical Services Labs at 59148 Silver Valley Road, Osburn, Idaho, where they were processed and analysed for their precious and base metal content. Some samples were also subjected to ICP 35 element analysis. Only limited number of Standard Reference Materials (SRMs) including standards and blanks were inserted into the sample stream by Bayhorse personnel. The authors have reviewed all the laboratory QAQC data where available for Bayhorse samples and have not seen any issues. Where the sampling was completed in the vicinity of the potential resource shapes with confirmed locations it has been deemed suitable for inclusion in the resource estimation process.

Based upon recommendations of the authors, Bayhorse personnel are now inserting a standard, a blank and a duplicate for every 20 chip-channel samples and every 20 long hole and core drill hole samples. Effectively, any and all sampling that could be used in future resource estimation campaigns will contain approximately 15% SRMs inserted by Company personnel.

12.3 Author’s Property Visits

Gerald E. Ray, Ph.D., P.Geo. – 2013 and 2018 Property Visits

Gerald E. Ray, Ph.D., P.Geo., is an independent consulting geologist who completed the initial NI 43-101 report on the Property (Ray, 2015). In November 2013, Dr. Ray conducted a site visit to the Bayhorse Property in advance of writing the earlier Technical Report. During the site visit, a total of fifteen (15) surface rock grab samples with visible sulphide and sulfosalt mineralization were collected (Ray, 2015). These proved to be Ag-rich and Cu-Zn-Pb bearing. The mineralized
rhyolite samples were taken from either a historic rock dump located at UTM 482542E-4922065N, from float, or from mineralized outcrops in various parts of the property. The reader is cautioned that the hand samples were selective by nature and were intended to confirm the presence and the nature of Ag mineralization at the Bayhorse Property and are not necessarily representative of the Bayhorse mineralization or its metal grades. No quality control samples (i.e. blanks and standard samples), were submitted for analysis with the 15 rock samples, however, ALS laboratory did perform check repeat assays and inserted their own laboratory standards and blanks. No issues with the analysis of the fifteen rock samples were identified. The descriptions, locations and assay data for these 15 samples are shown above in Tables 9.1 and 9.2 and in Figure 6.1.

More recently, Dr. Ray visited the Bayhorse property on the 22nd and 23rd of June 2018 and the 28th and 29th of September 2018. No assay samples were collected during the site visits but parts of the Intermediate Level workings, including the Big Dog stope, were examined during the most recent site visit. Dr. Ray observed that both the mineralized rhyolite and the barren andesite country rocks of the Intermediate Level had been affected by multi-phase deformation, including brittle thrusting and faulting, as well as possible folding and boudinage.

Mike B. Dufresne, M.Sc., P.Geo. (APEX) - 2018 Property Visit

Mr. Michael B. Dufresne, M.Sc., P.Geol., an independent consulting geologist with APEX Geoscience Ltd. (Edmonton) and the principal author of this Technical Report, visited the Bayhorse Property on June 22 and 23, 2018. During the site visit, Mr. Dufresne collected six (6) rock samples, which were submitted to ALS Laboratories for analysis. At the time of the visit, a small portion of the Upper Level drift was open and a sample of malachite-stained and sulphide-bearing rhyolite collected from the rib approximately 100 feet (30 m) in from the portal returned values of 3.95 oz/t (135.5 ppm) Ag and 0.28% Cu and 0.68% Zn. Two samples of weakly mineralized rhyolite collected in the Intermediate Level returned values of 0.99 oz/t (34 ppm) and 1.87 oz/t (64 ppm) Ag. Of interest were samples of the product and reject piles coming from the Steinert ore sorter that returned values of 12.56 oz/t (430.5 ppm) Ag and 0.96 oz/t (33 ppm) Ag, respectively, with the product material also containing 0.73% Cu, 0.52% Pb and 4.46% Zn. Finally, a sample of the concentrate coming from the Wilfley table at the mine returned values of 24.82 oz/t (851 ppm) Ag, and 2.00% Cu, 0.55% Pb and 4.55% Zn. Thus, the confirmation samples collected by Mr. Dufresne during his June 2018 site visit confirmed the presence and general nature of the silver (and base metal) mineralization at the Bayhorse Silver Mine and confirmed that the Steinert ore sorter, and the Wilfley table, are producing relatively high-grade product materials. The locations of the samples collected by Mr. Dufresne are shown in Figure 12.3.
Andrew J. Turner, P.Geol. (APEX) 2018 Property Visit

Mr. Turner, P.Geol., an independent consulting geologist with APEX Geoscience Ltd., visited the Property on August 15 and 16, 2018. This visit was intended to correspond with the breakthrough of the new mid-level haulage way into the historical (1980s) ‘west workings’ of the Bayhorse Mine. From the reconstructed 3-dimensional model of the Bayhorse mine workings, which had recently been completed by APEX from a detailed review of archived mine drawings, it was anticipated that the breakthrough would occur into the old haulage way between the 250 and 310 Raises. On August 16, the breakthrough occurred just east of the 250 Raise, which was very close to the expected location. Mr. Turner conducted an examination of the accessible portions of the old workings, which were found to correspond very closely with the 3-D modeled workings that APEX had recently constructed. No significant changes to the modeled workings were made as a result of the site visit.

In addition to verifying the general shape of the ‘western workings’ within the Bayhorse Mine, Mr. Turner collected a total of 7 composite grab rib samples in order to confirm the nature and tenor of the Bayhorse deposit in this area. All of the samples comprised variably mineralized (sulfidized) and (clay) altered rhyolite. The locations of the confirmation samples collected by Mr. Turner are shown in Figure 12.4 which comprise 3 samples collected from the ribs within the Big Dog stope and 4 other samples collected from the ribs of the old haulage way and an ancillary drift between the Big Dog stope and the 250 Raise.
A summary of the analytical results for the underground confirmation samples is provided in Table 12.1. All of the 7 samples returned silver values >3 oz/t (>100 ppm) with results ranging from 3.35 oz/t to 269.8 oz/t Ag (115 to 9250 ppm Ag) and averaged 1662 ppm Ag (48.5 oz/t Ag). The co-authors sampling confirmed the high-grade nature of the silver mineralization that comprises the Bayhorse Deposit. Significant concentrations of Pb (0.07-0.50%), Zn (0.69-3.34%), Cu (0.69-9.65%), As (0.12 - > 1.0%) and Sb (0.35 - > 1.0%) were encountered. This indicates that minor amounts of galena and sphalerite are present and that the fine grained, dark (“sooty”) sulphides observed within the samples are likely minerals in the Tetrahedrite-Tennantite solution series.

Table 12.1 Confirmation samples collected by Mr., A. Turner, B.Sc., P.Geol., August, 2018.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Location</th>
<th>SG</th>
<th>Ag (g/t)</th>
<th>Cu (%)</th>
<th>Pb (%)</th>
<th>Zn (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18ATP010</td>
<td>East rib of the Big Dog stope</td>
<td>3.11</td>
<td>9250</td>
<td>9.65</td>
<td>0.50</td>
<td>3.34</td>
</tr>
<tr>
<td>18ATP011</td>
<td>base of the 250 Raise</td>
<td>2.83</td>
<td>115</td>
<td>0.79</td>
<td>0.09</td>
<td>2.02</td>
</tr>
<tr>
<td>18ATP012</td>
<td>NW corner of the Big Dog stope</td>
<td>2.85</td>
<td>215</td>
<td>2.22</td>
<td>0.10</td>
<td>2.65</td>
</tr>
<tr>
<td>18ATP013</td>
<td>SW corner of the Big Dog stope</td>
<td>2.94</td>
<td>344</td>
<td>2.88</td>
<td>0.10</td>
<td>4.74</td>
</tr>
<tr>
<td>18ATP014</td>
<td>back in the old powder mag site in the drift immediately west of the BD stope</td>
<td>2.84</td>
<td>290</td>
<td>3.99</td>
<td>0.13</td>
<td>1.74</td>
</tr>
<tr>
<td>18ATP015</td>
<td>rib near an old raise at the south end of the stope immediately West of the BD stope</td>
<td>2.78</td>
<td>964</td>
<td>1.08</td>
<td>0.07</td>
<td>1.08</td>
</tr>
<tr>
<td>18ATP016</td>
<td>SW rib of the drift between the BD stope and 350 Raise</td>
<td>2.79</td>
<td>459</td>
<td>0.69</td>
<td>0.08</td>
<td>0.69</td>
</tr>
</tbody>
</table>
Specific gravity (density) measurements were also made by ALS Laboratories during the analysis of Mr. Turner’s site visit samples (see Table 12.1). Although the samples comprise somewhat selective composite grab samples of rib and muck pile material, they were collected to be representative of the mineralization observed in the area of their collection and no effort to “high-grade” mineralization was made. As a result, the average density value for these 7 samples (2.88) is considered significant and, along with SG data reported from a small set of Bayhorse underground samples, supports the value of 2.80 that was used in the Bayhorse deposit maiden inferred resource calculations discussed in a subsequent section of this report.

13.0 MINERAL PROCESSING AND METALLURGICAL TESTING

Although small-scale historical underground mining was conducted on the property in the 1920’s and 1980’s, no information is known about the historic mineral processing as ore was apparently direct shipped to smelters. Shenon (1924) completed a M.Sc. thesis on the geology and metallurgy of the Bayhorse deposit but no details are available.

13.1 Steinert Ore Sorter

The Bayhorse Silver Property faces unique challenges due to the limited amount of flat land available for potential infrastructure development as well as the Property’s proximity to the Snake River. As a result, Bayhorse has been investigating a number of options for potential “ore” processing, both on and off site that would satisfy various environmental regulations. One such possibility is the potential for dry ore processing on site that would essentially eliminate the need for a water permit or at least significantly reduce water requirements and issues related to waste water management. The company’s CEO, Mr. Graeme O’Neill, completed an investigation of various options and eventually focused on the KSS100 X-ray sorter, manufactured in Germany by Steinert Global, due to its potential to efficiently dry sort Bayhorse mineralization and produce a high-grade product either for direct sale or possible off-site floatation concentration.

The KSS100 measures absorbed and transmitted X-rays to determine the density of individual rock fragments as they are conveyed through the machine. The degree of X-ray absorption is a function of both the size and the overall atomic mass for each fragment. The use of transmitted X-rays eliminates interference due to surface materials (i.e. dust and dirt) adhering to fragments and the use of multiple energy level X-rays and specific scanning algorithms eliminates the influence of particle size and leaves atomic mass as the main factor influencing the density determination for each fragment. The sulphide mineral content (i.e. heavy metal cation content) of the Bayhorse mineralization provides a reasonable amount of “density” contrast particularly in comparison to the rhyolite, which is the primary host rock for the Bayhorse mineralization. The operation of the Steinert machine is completely automatic and can be monitored remotely by both Steinert and Bayhorse management. Thus, Steinert technicians can adjust the operating parameters and sorting algorithm of the machine remotely in real-time from their North American offices located in Walton, Kentucky (KY).
The reason for performing ore sorting and upgrading is that the run-of-mine (ROM) material from the Bayhorse mine is likely to contain minor amounts of low-grade, or unmineralized, host rock (dilution). As a result, it was considered important to evaluate the optimal fragment size for the feed going into the Steinert sorter that would allow for the most efficient removal of “waste” while limiting, a) the amount of ore loss to the “waste” pile (due to host rock inclusions) and b) the amount of pre-processing (i.e. crushing and screening) required.

Bayhorse Silver submitted 3,275.2 kg of mineralized material from the Bayhorse Mine to the Steinert Test Center in Walton, KY for test work in 2017. A report on these preliminary tests was received on August 8th, 2017 (von Ketelhodt, 2017). Several tests involving various sample feed sizes and Steinert sorting settings were run and an optimal sorting setup was determined for the -50mm (~ 2”) material being processed. For the -50mm material, three (3) different Steinert “settings” were tested in order to investigate the trade-off between overall Ag recovery and product grade. The three tests resulted in increasing overall Ag recoveries that, as expected, varied directly with mass-pull but inversely to product grade. The Ag recoveries ranged from 38.4% to 65.9%, with corresponding mass-pull values of 14.0% and 44.2% and product grades of 7.63 oz/t (261.6 ppm) Ag and 4.14 oz/t (142 ppm) Ag, respectively. These values represent increases (or upgrades) of 174% and 48%, respectively, relative to the feed grade of 2.78 oz/t (95.4 ppm) Ag. Of note is the fact that the reject for all three tests showed less variance between 1.99 oz/t (68.3 g/t) Ag and 1.70 oz/t (58.4 ppm) Ag. The best overall Ag recovery sort test on the 3275.2kg of -50mm sample material resulted in a product that represented a mass-pull of 44.2% (1449.1kg) that assayed 4.14 oz/t (141.96 ppm) Ag and, in comparison to the feed grade of 2.78 oz/t (95.36 ppm), represented an increase in grade of 48%.

On May 2nd, 2017, Bayhorse announced its decision to order a KSS100 x-ray sorter. The sorter can process up to 40 tons (36.3 tonnes) of crushed rock per hour and is able to separate mineralized material from waste and effectively upgrade ROM material from the Bayhorse deposit. The company then has the option to either direct sell the upgraded material to smelting companies or transport the upgraded material for additional processing (i.e. floatation and/or leaching) at an off-site facility. As expected, the Steinert sorting tests completed by Bayhorse were performed without any water use and the system found to have relatively low power requirements. The Company funded the purchase of the KSS100 XRT ore-sorter by entering into an Interim Financing Loan agreement for US$803,988 (CDN$1,044,059) with NFS Leasing, Inc. Beverly, MA.

13.2 Met-Solve Floatation Test Work (March 2014)

Floatation testing was completed on samples of Bayhorse mineralization in 2014 at Met-Solve Laboratories Inc., in Langley, British Columbia. The 3 samples tested comprised: a 4kg (3988.3g) sample of “clay fines” characterized as P_80-217μm (as received), a 2kg (1966.5g) low-grade composite that was processed to P_80-145μm, and a 2kg (1981.5g) high-grade composite that was processed to P_80-139μm. The results of the floatation tests on these 3 samples are presented in Table 13.1 below. At a reasonable grind size (P_80-140-145μm), the Bayhorse mine ore appears to be amenable to simple floatation, independent of feed grade, with silver recoveries ranging between 82.8% and 87.2%, likely due to the association of Ag and Cu in the tetrahedrite-tennantite mineral species. Cu recoveries were similar to those of Ag ranging between 86.7% and
95.8%. The Ag and Cu recoveries in the “fines” sample (P80-217µm) were slightly lower at 59.1% and 52.2%, respectively.

Table 13.1 Summary of 2014 Met-Solve floatation test work on Bayhorse mineralization.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Head</th>
<th>Con (totals)</th>
<th>Tails</th>
<th>Recoveries</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Weight (g)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fines</td>
<td>3988.3</td>
<td>1095.6</td>
<td>2892.7</td>
<td>27.5%</td>
</tr>
<tr>
<td>Ag (ppm)</td>
<td>194</td>
<td>189</td>
<td>417</td>
<td>110</td>
</tr>
<tr>
<td>Cu (%)</td>
<td>0.19</td>
<td>0.17</td>
<td>0.36</td>
<td>0.12</td>
</tr>
<tr>
<td>Pb (%)</td>
<td>0.11</td>
<td>0.11</td>
<td>0.13</td>
<td>0.10</td>
</tr>
<tr>
<td>Zn (%)</td>
<td>1.04</td>
<td>0.99</td>
<td>1.64</td>
<td>0.81</td>
</tr>
<tr>
<td>Analysis</td>
<td>Calculated</td>
<td>Avg. Assay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low-Grade</td>
<td>1966.5</td>
<td>466.4</td>
<td>1500.1</td>
<td>23.7%</td>
</tr>
<tr>
<td>Ag (ppm)</td>
<td>164</td>
<td>165</td>
<td>603</td>
<td>28</td>
</tr>
<tr>
<td>Cu (%)</td>
<td>0.24</td>
<td>0.20</td>
<td>0.99</td>
<td>0.01</td>
</tr>
<tr>
<td>Pb (%)</td>
<td>0.10</td>
<td>0.10</td>
<td>0.28</td>
<td>0.05</td>
</tr>
<tr>
<td>Zn (%)</td>
<td>0.95</td>
<td>0.93</td>
<td>3.50</td>
<td>0.16</td>
</tr>
<tr>
<td>Analysis</td>
<td>Calculated</td>
<td>Avg. Assay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-Grade</td>
<td>1981.5</td>
<td>810.1</td>
<td>1171.4</td>
<td>40.9%</td>
</tr>
<tr>
<td>Ag (ppm)</td>
<td>4884</td>
<td>5330</td>
<td>9887</td>
<td>1424</td>
</tr>
<tr>
<td>Cu (%)</td>
<td>5.05</td>
<td>4.23</td>
<td>10.71</td>
<td>1.14</td>
</tr>
<tr>
<td>Pb (%)</td>
<td>2.30</td>
<td>2.07</td>
<td>3.27</td>
<td>1.62</td>
</tr>
<tr>
<td>Zn (%)</td>
<td>9.77</td>
<td>7.65</td>
<td>18.37</td>
<td>3.83</td>
</tr>
<tr>
<td>Analysis</td>
<td>Calculated</td>
<td>Avg. Assay</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A 5kg sample of Bayhorse concentrate was submitted for an initial column leach testing at Metals US, Inc. in Missoula, Montana. The sample was directly loaded into a plastic column and a nitrate-based leach solution was pumped up through the column. Initially, the residence time for the leach solution was planned to be 12 to 24 hours. However, reaction times were observed to be more rapid than anticipated and a residence time of approximately 2 hours was found to be sufficient for the solution to reach equilibrium. A comparison of the head assay value and the cumulative leach total for Ag after the 3 week test indicated a recovery of 101%. Arsenic (As), Cu, Pb and Zn were also tracked through the leach process and their respective recoveries were calculated as 17%, 23%, 56% and 60%. Although the leach test was run for 3-weeks, Metals US, Inc. concluded that the more rapid silver leaching would result in a 7 to 10 day leach process at an operating scale and that additional testing was recommended (Metals US, 2018).
13.4 Heavy Liquid Separation Testing, Met-Solve Labs Inc. (2016)

In July 2016, Bayhorse Silver submitted 8 buckets of coarse crushed mineralized material to Met-Solve Laboratories Inc. for Heavy Liquid Separation. The buckets were combined into a single composite sample that was described as -25(mm) and had a calculated head grade of 3.93 oz/t (134.78 ppm) Ag. The composited sample material was then screened and tested in 5 size fractions, including fines <0.85(mm), or 20 mesh, using 5 heavy liquids ranging from SG 2.63-2.75. The results showed no significant difference in the separation characteristics of the 4 size fractions between 0.85 and 25 (mm) (+20 mesh), and indicated that overall cumulative recovery for Ag was 72.4%, with a 9.1% mass-pull (sink fraction) comprising material > SG 2.75. Using an SG 2.70 liquid, the Ag recovery increased to 81.1% but the mass-pull doubled to 18.7%. In terms of mass-pull and overall recovery, the Cu values were very similar to those reported for Ag. The grade of the >2.75SG sink fraction (31.29 oz/t (1072.7 ppm) Ag) was increased by a factor of ~8 relative to the head grade (Table 13.2).

Table 13.2 Summary of 2016 Met-Solve Heavy Liquid Separation test work on Bayhorse mineralization.

<table>
<thead>
<tr>
<th>Size Fraction of Fraction</th>
<th>Cumul. Mass Fraction (g)</th>
<th>Cumul. Size Fraction (%)</th>
<th>Cumul. Sink-Fraction (%)</th>
<th>Cumul. Ag Grade g/t</th>
<th>Cumul. Ag g/t</th>
<th>Size Fraction (%)</th>
<th>Sink-Fraction (%)</th>
<th>Cumul. Fraction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>>2.75</td>
<td>1,715</td>
<td>9.1</td>
<td>9.1</td>
<td>1,072.37</td>
<td>1,072.37</td>
<td>96.6</td>
<td>72.4</td>
<td>72.4</td>
</tr>
<tr>
<td>2.75/2.70</td>
<td>3,520</td>
<td>9.6</td>
<td>18.7</td>
<td>122.32</td>
<td>585.20</td>
<td>81.1</td>
<td>8.7</td>
<td>81.1</td>
</tr>
<tr>
<td>2.70/2.67</td>
<td>6,438</td>
<td>15.5</td>
<td>34.2</td>
<td>47.83</td>
<td>341.64</td>
<td>86.6</td>
<td>5.5</td>
<td>86.6</td>
</tr>
<tr>
<td>2.67/2.65</td>
<td>10,656</td>
<td>22.4</td>
<td>56.6</td>
<td>26.65</td>
<td>216.97</td>
<td>91.1</td>
<td>4.4</td>
<td>91.1</td>
</tr>
<tr>
<td>2.65/2.63</td>
<td>14,447</td>
<td>20.1</td>
<td>76.7</td>
<td>22.31</td>
<td>165.88</td>
<td>94.4</td>
<td>3.3</td>
<td>94.4</td>
</tr>
<tr>
<td><2.63</td>
<td>17,647</td>
<td>17.0</td>
<td>93.7</td>
<td>17.45</td>
<td>138.96</td>
<td>96.6</td>
<td>2.2</td>
<td>96.6</td>
</tr>
<tr>
<td>Sub-total/Average</td>
<td></td>
<td>93.7</td>
<td></td>
<td>138.96</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-20 Mesh</td>
<td></td>
<td>-</td>
<td>6.3</td>
<td>72.80</td>
<td>3.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>100.0</td>
<td></td>
<td>134.78</td>
<td>100.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

13.5 Met-Solve Thiosulphate Leach Test (April 2014)

A Thiosulphate leach test was performed at Met-Solve Laboratories Inc. in April 2014 involving the same 2kg ‘low-grade’ composite sample that was processed to $P_{80}=145\mu m$ and yielded a standard floatation Ag recovery of 87.2% with a 23.7% mass pull (see Section 13.2). The Thiosulphate leach test was run for over six hours on a slurry comprising 10%. The results were poor with a total silver recovery of only 37.7%.
14.0 MINERAL RESOURCE ESTIMATES

14.1 Introduction

The statistical analysis, geological modelling and resource estimation discussed in this section of the Technical Report was performed by Mr. Steven Nicholls, BA Sc., MAIG, with APEX Geoscience Ltd. (APEX) with contributions by Mr. Andrew Turner, B.Sc., P.Geol., P.Geo., under the direct supervision of Mr. Michael Dufresne, M.Sc., P. Geol., P.Geo., also with APEX. All three authors are independent geological consultants and Qualified Persons as defined by National Instrument 43-101. Mineral resource modelling and estimation was carried out using a 3-dimensional (3-D) block model based on geostatistical applications using commercial mine planning software MICROMINE (v18.0).

Modeling was conducted in Universal Transverse Mercator (UTM) coordinate space relative to zone 11 of the 1983 North American Datum (NAD 83, zone 11). A parent block size of 4 m (X) x 4 m (Y) x 4 m (Z) (4 m = 13.12 ft), with sub-blocking to 1 m (X) x 1 m (Y) and 1 m (Z) (1 m = 3.28 ft), was used in order to more accurately honor the lode wireframe volumes. The block sizes were picked to be representative of an underground mining operation. The database consists of 28 historic drillholes completed at the Bayhorse Silver underground mine and 379 channel sample lines completed from underground development. Of these, 15 drill holes and 300 individual channel samples were used to calculate the Bayhorse Silver resource estimate. Mr. Dufresne, M.Sc., P.Geol., P.Geo. visited the property in June, 2018 and Mr. Turner in August, 2018 to verify and validate the underground workings and the mineralization. Following the acquisition of the Bayhorse Silver project by Bayhorse Silver Inc. in 2013, the Company initiated a significant historical data verification and validation program. In the opinion of APEX, the Bayhorse Silver database is suitable for resource estimation and the current drillhole/channel sample database is deemed to be in good condition and suitable for use in ongoing resource estimation studies. This is the company’s maiden mineral resource estimate for the Bayhorse Silver deposit.

The Bayhorse Silver mineral resource estimate is reported in accordance with the Canadian National Instrument 43-101 and has been estimated using the CIM “Estimation of Mineral Resources and Mineral Reserves Best Practice Guidelines” dated November 23rd, 2003 and CIM “Definition Standards for Mineral Resources and Mineral Reserves” dated May 14th, 2014.

14.2 Data

14.2.1 Drillhole Database Validation

The Bayhorse Silver database has undergone extensive validation prior to the 2018 resource estimation effort discussed below. The historic channel sampling comprises actual rib and back sampling completed in the underground as well as ‘round assay’ data that was collected historically as the underground developments were advanced. These ‘round assays’ represent composite grab samples that were collected from the muck pile after each round was blasted during the advancement of several drifts (workings) within the Bayhorse Mine. Historical maps showing the extent of each round, and its corresponding muck pile ‘round’ assay, were digitized and each assay was treated as channel sample running down the center of the drift/working running from the start to the end of each blast round. The historical underground drilling within
the current database was mostly completed at the west end of the Intermediate Level haulage way and Lower Level drift. Drilling was completed in a fan pattern both horizontally and vertically, designed to obtain maximum sampling coverage of the orebody. The collar locations of the historical drill holes were digitized from historical maps and sections that could be properly located relative to the historical mine workings and have not been surveyed. No down/up-hole surveys were available from the historical underground drilling. As drillholes were all less than 141 ft (43 m) (typically ~50 to 65 ft (15 to 20 m)), any deviation is expected to be minimal.

The extensive historical data compilation and data validation process described above resulted in a compiled underground sampling database for the Bayhorse Silver deposit that is considered by the authors of this report to be sufficiently reliable for use in the mineral resource estimation effort described below.

14.2.2 Micromine Database

The drilling database used is current as of September, 2018. The database incorporates all available channel samples and diamond core (CORE) drilling completed to date. All data for the mineral resource estimation was copied from excel spreadsheets into the Micromine program. The Micromine .DAT files that were generated and utilized in the mineral estimation include:

- Collars_All Drill and UG Samples – Collar and Survey file for the drill holes and channels;
- Drill Assays – Assay file for drill holes and channels;
- Underground development wireframes/solids (Lower Level, Mid Level, New Haulage, Old Haulage and big dog stope, Raises, Upper level, and West workings and raises);
- Digital elevation model – 10 ft contours; and
- Density – Specific gravity measurements;

The Bayhorse database includes a total of 28 diamond core holes and 379 channel samples of which 15 core holes and 300 channel samples were used to guide the mineralization interpretation and shapes along with estimation of the Bayhorse Silver resource. The diamond drilling was completed by USMC in the 1920’s, Cordex in 1976 and Silver King in 1984. There are records for more than 200 underground holes completed by Silver King during the 1984 mining campaign, including silver assays and cross sections, however, the vast majority of these holes are not well located. The channel sampling for the Upper Level was completed by USMC in 1920’s and reported on by Full (1959). Channel sampling for the Intermediate Level (Big Dog Stope) and for the Lower Level was completed by Cordex in 1976. Channel sampling for the Western Intermediate workings was completed by Silver King in 1984. The channel sampling was systematically collected on regular spaced intervals of 1 to 57 ft (0.29 to 17.27 m) (typically around 5.2 to 6.6 ft (1.6 to 2 m)) on the Legend zone, Lower Level, New Haulage way (Bayhorse Silver), Upper level, Upper level stope, and West workings (Figures 14.1 and 14.2). The diamond drilling was mainly completed from the western end of the Old Haulage drive, the west working drive and the Lower level. Drilling was completed in a fan pattern (both horizontally and vertically), designed to obtain maximum sampling coverage of the mineralization. All of the drillholes and channel lines were used to guide the mineralization model that was ultimately used in the resource estimation calculation.
Figure 14.1 Plan view of the Bayhorse Silver mineralization Interpretation.

Figure 14.2 Bayhorse Silver long section of the mineralization model, underground development and drillhole/channel lines.
APEX estimated the Maiden Inferred Mineral Resource at Bayhorse Silver utilizing 300 underground channel samples from a total of 300 channel lines and 60 diamond drill core samples from a total of 15 core holes that have intersected the Bayhorse Silver mineralized zone. The drillhole database was validated using the validation functions within the Micromine modeling software. No significant errors or issues were noted.

The key to constructing the 3-D model for the Bayhorse Mine was the compilation of various historical plans and cross-sections documenting the extent of historical underground mining and development workings throughout the mine. The Bayhorse Mine includes workings developed on 3 levels that essentially represent three different mining periods. The earliest development at the Bayhorse Mine was on the lower level, which comprises a single drive approximately 655 ft (200 m) in length running from the ‘lower portal’ with a sill height of approximately 2236 ft (681.6 m). The next phase of work focused on the ‘upper’ level, developed from the upper portal (sill height of approximately 2367 ft or 721.5 m). The upper level workings focused on the eastern half of the Bayhorse Mine and included two stopes referred to as the “Sunshine” and “Junction” stopes. Finally, in the mid 1980’s, development work was completed along the ‘intermediate’ or mid-level workings, which represent the central and western parts of the Bayhorse Mine. Initially, the “mid-level” workings did not have their own portal and were apparently accessed from the upper workings and a winze down to the lower level drift was used to remove ore. Eventually, the Intermediate Level portal and drift were established at a sill height of approximately 2325 ft (708.7 m). The mid-level workings included the “Big Dog” stope and various development drifts along the western part of the mine, which were developed out of the west end of the Big Dog stope.

The extents of the lower and upper level workings were relatively well documented by historical maps and sections and were easily digitized, converted to 3-D shapes and positioned relative to the known locations of their respective portals. Similarly, the majority of the “mid-level” workings were also reasonably well documented and were digitized and modeled in 3-dimensions. Ironically, the extents of the most recently completed western mid-level workings were not well documented but were eventually ascertained by APEX through the careful compilation of several historical maps and sections. In order to provide modern safe access to the Bayhorse mineralization, particularly at the west end of the deposit, Bayhorse Silver Inc. initiated the excavation of a new haulage drift at the approximate elevation of the mid-level workings. In August of 2018, the new haulage drift intersected the historical mid-level haulage drift just west of the Big Dog stope, as predicted. Andrew Turner, P.Geol. (in independent consulting geologist with APEX) conducted a site visit as this breakthrough occurred and was able to personally enter and examine the main haulage level of the historical western mid-level workings and was able to confirm that the 3-D compilation completed by APEX for this part of the mine was essentially correct. As a result, APEX considers the current compilation of the historical workings at the Bayhorse Mine to be complete and correct and suitable for use in the geological modeling work described in this section.
14.3 Lithological Model/Lode Interpretation

The Bayhorse mineralization is associated with quartz, silica, carbonate veining and minor sericite, chlorite and K-spar within a rhyolite body. In places such as in the Legend Zone the mineralization is associated with chlorite-clay stockwork veining. This mineralogy, together with the colorless low Fe sphalerite and abundant sulfosalts (Leitch, 2013) suggests that the mineralization was deposited under relatively low temperature conditions, at a relatively high structural level and distal to its magmatic hydrothermal source.

Using Micromine 3-D software, a sectional approach was utilized for the initial examination of the underground drillhole and channel sample database and the eventual modeling of 3D solids to constrain the mineralization comprising the Bayhorse silver deposit.

Mineralization within the Bayhorse deposit is generally hosted within a rhyolite unit that has been affected by the flat to shallowly south-dipping Sunshine thrust fault. The Sunshine fault, as illustrated on geological sections produced by Conway et al. (2014) (Figures 7.3 to 7.6), is actually a complex fault zone with abundant anastomosing cross-faults (horse faults) over a thickness of some 30-40 ft (~9.1-12.2 m), and possibly more judging by the vertical extent of mineralization within the western workings, for example. In fact, recent work by Conway (2015) involving more extensive thrust faulting and alteration suggest that a more extensive precursor Sunshine Thrust existed prior to the intrusion of the rhyolite sill and that much of the silver-rich sulphides was deposited in this initial structure. In order to construct mineralized envelopes for resource estimation, silver assay data from the Bayhorse drill database (comprising historical channel sample and drill hole data) was examined in sectional view relative to the underground workings. Cross-sections were generated with a 32.8 ft (10 m) section spacing along which the mineralization lode was interpreted. Based upon the extent and orientation of historical workings, and interpreted mineralized zones shown on historical sections, the Bayhorse deposit was modeled as a variably south-dipping cross structure (20-40° south-dipping ‘horse fault’ between theoretical (but not observed) ‘roof’ and ‘sole’ faults that parallel the defined extents of the Sunshine Thrust fault zone.

Mineralization lodes/solids were constructed to honour the shape of historical lode interpretations as well as to contain mineralization within the Bayhorse underground database above a rough cut-off value of about 2-3 opt (68.57-102.86 ppm) Ag (Figures 14.1, 14.2 and 14.3). The mineralized zone was extrapolated approximately between 32.8 and 65.6 ft (10 and 20 m) up and down dip of the existing underground development. Two different zones/lodes of mineralization resulted from the Bayhorse silver lode interpretation. The east and west domains were created to accommodate elevation differences in the mineralization, which were separated by an interpreted late northeast-striking vertical normal fault with an apparent offset of approximately 32.8 ft (10 m) (down to the east).
Figure 14.3 Bayhorse Silver schematic sections showing constraining fault zone.
Thorough documentation of the analytical methodologies used to generate the silver assay data for the historic channel samples within the Bayhorse underground drill/channel sample database is largely unavailable. However, Wise (1984) provides a number of hand drawn sketch maps with silver values in ounces per ton along with drill sections and a number of hand written mine site laboratory sheet from one of Silver Kings operating mine site laboratories. A number of these sample sheets certify some of the channel sampling and drill holes sampling data although the metadata is not sufficient to ascertain techniques of preparation and assay. A certain amount of reruns are evident and were conducted sporadically. The work typifies the laboratory and exploration work of the era and the authors have not reason to doubt the efficacy of the data. Furthermore, ongoing sampling in the western workings is confirming a number of these sample results and potentially may allow the addition of further historic drillhole data. Based upon the data in Wise (1984) there were close to 300 holes drilled and assayed as part of the Silver King underground program of work in 1984. Further work on compiling the metadata associated with the Bayhorse Silver historic drillhole and channel sample database is recommended.

Histograms, probability plots and summary statistics for the Bayhorse Silver un-composited samples that are situated within the interpreted mineralized lode are presented in Figures 14.4 and 14.5, and tabulated in Table 14.1. Due to the small number of assays situated within the mineralized horizon the Bayhorse Silver show moderate amount of noise, but overall show that the sample population belong to a single population. As such, linear estimation techniques are appropriate for use for the Bayhorse Silver deposit. Two mineralized wireframes/solid was constructed based upon the assay channel and drillhole information.

Figure 14.4 Histogram of the un-composited silver assays constrained within the lodes.
Figure 14.5 Probability Plot of the un-composited silver assay dataset constrained within the lodes.

Table 14.1 Summary statistics for un-composited silver (opt) data constrained within the lode.

<table>
<thead>
<tr>
<th>NORMAL STATS</th>
<th>Ag (opt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>21.885</td>
</tr>
<tr>
<td>Median</td>
<td>11.6</td>
</tr>
<tr>
<td>Std Dev</td>
<td>31.536</td>
</tr>
<tr>
<td>Variance</td>
<td>994.53</td>
</tr>
<tr>
<td>Std Error</td>
<td>1.683</td>
</tr>
<tr>
<td>Coeff Var</td>
<td>1.443</td>
</tr>
<tr>
<td>Minimum</td>
<td>0</td>
</tr>
<tr>
<td>Maximum</td>
<td>260.8</td>
</tr>
<tr>
<td>Number of Points</td>
<td>360</td>
</tr>
</tbody>
</table>
14.4 Quality Control

Details of the data verification efforts completed by the authors of this report are presented in Section 12 of this report. In summary, the geological modeling and estimation work that resulted in the maiden inferred resource estimate for the Bayhorse Deposit relies largely upon historical work completed prior to the implementation of National Instrument 43-101. In addition, little to no Quality Assurance or Quality Control (QAQC) information is available. However, based upon verification sampling by the authors and Bayhorse, in the opinion of the authors of this report, the historical work appears to have been completed in accordance with industry standards at the time and is thus deemed acceptable for use in the resource estimation work described herein.

The assay information used to guide geological modeling work and to assign grade to the resulting block model largely comprises historical drillholes assays, underground chip-channel samples and some long holes and/or face sampling production assays collected from muck piles following the blasting of individual rounds as workings were advanced for which the authors were able to locate reliable collar (or sample location) and assay information. This data was located in 3-dimensional (3-D) space relative to historical workings throughout the Bayhorse Mine that were constructed (modeled) from historical level plans and cross-sections. The 3-D workings model was later used to tag blocks representing previously mined material, which were removed from the resource estimate. The authors of this report found the workings of the Lower and Upper levels of the Bayhorse Mine to be well documented whereas the workings of the Intermediate Level, in the western part of the mine, were not as well documented. APEX was eventually able to find a sufficient amount of information in the company’s archived data files to piece together a model for the Intermediate Level workings and in August, 2018 Bayhorse broke into the old Intermediate Level workings from its new haulage drift. Mr. Turner (APEX) was able to examine the old Intermediate Level haulage way and confirmed the accuracy of the ‘workings’ model in this area. Mr. Turner also collected 7 composite grab samples of mineralization exposed in the ribs of the western workings and the Big Dog stope and verified the presence of significant silver mineralization in this part of the mine.

As a result of the significant historical data compilation effort and the verification that was completed as a result of the author’s various site visits to the Bayhorse Mine, the authors of this report were of the opinion that the available information was suitable for use in the geological modeling and resource estimation effort described in this section of this technical report. However, due to the largely historical nature of the data and the lack of information and/or documentation pertaining to sample collection, analytical techniques and QAQC, the maiden mineral resource estimate for the Bayhorse Mine was categorized as Inferred. Additional (new) sampling work comprising channel sampling in rehabilitate workings and drilling away from workings, completed with a comprehensive QAQC program, will be required in order to provide a greater level of certainty in, and a higher level of categorization of, the mineral resources comprising the Bayhorse Deposit.
14.5 Drillhole/Assay Flagging and Compositing

Samples situated within the mineralized wireframes/solids were selected and flagged with the wireframe name/code. The flagged samples were checked visually next to the drillhole/channel line to check that the automatic flagging process worked correctly. All samples were correctly flagged and there was no need to manually flag or remove any samples.

A review of the sample lengths was conducted on the samples that were situated within the mineralized wireframes. The channel/drillhole sample width analysis results showed a variable sample length from 1 to 57 ft (0.29 to 17.27 m) (Figure 14.6 and Table 14.2). The anticipated underground SMU is expected to be around 2 to 3 m (6.6 to 9.8 ft) in size. As such it was decided to composite the channel/drill hole samples to 2 m (6.6 ft) in size.

Figure 14.6 Histogram of sample length for the Bayhorse Silver un-composited assay file situated within the mineralization model.
Table 14.2 Sample length statistics for the Bayhorse Silver un-composited assay file.

<table>
<thead>
<tr>
<th>NORMAL STATS</th>
<th>Width (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>1.983</td>
</tr>
<tr>
<td>Median</td>
<td>1.58</td>
</tr>
<tr>
<td>Std Dev</td>
<td>1.684</td>
</tr>
<tr>
<td>Variance</td>
<td>2.836</td>
</tr>
<tr>
<td>Std Error</td>
<td>0.089</td>
</tr>
<tr>
<td>Coeff Var</td>
<td>0.849</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.29</td>
</tr>
<tr>
<td>Maximum</td>
<td>17.27</td>
</tr>
<tr>
<td>Number of Points</td>
<td>360</td>
</tr>
</tbody>
</table>

Length weighted composites were calculated for all of the Bayhorse Silver assay samples. The compositing process starts from the first point of intersection between the drillhole/channel line and the mineralized wireframe and is stopped upon the end of the mineralized wireframe. A comparison of the composite file silver grade against the un-composited silver grade showed that the composite file with orphans showed the best reflection of the overall un-composited silver grade (Table 14.3). As such it was decided to leave all orphans in the 2m composite file. This resulted in a total of 473 composites. There was a slight increase in the silver grade (4.8%) for the Bayhorse Silver composite file. The composited samples were used for all sample statistics, capping, estimation input file and validation comparisons.

Table 14.3 Comparison of silver grade of raw un-composited grade versus the various composite sample files for the Bayhorse Silver composite analysis.

<table>
<thead>
<tr>
<th>NORMAL STATS</th>
<th>Un-Composited Sample Grade (Ag opt)</th>
<th>Composited Sample Grade – with all orphans (Ag opt)</th>
<th>Composited Sample Grade – with orphans > 0.5m (Ag opt)</th>
<th>Composited Sample Grade – with orphans > 1.0m (Ag opt)</th>
<th>Composited Sample Grade – with orphans > 1.5m (Ag opt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>21.855</td>
<td>22.903</td>
<td>23.217</td>
<td>22.827</td>
<td>23.996</td>
</tr>
<tr>
<td>Median</td>
<td>11.6</td>
<td>13.8</td>
<td>13.9</td>
<td>14</td>
<td>14.3</td>
</tr>
<tr>
<td>Std Dev</td>
<td>31.536</td>
<td>30.011</td>
<td>31.139</td>
<td>30.182</td>
<td>30.486</td>
</tr>
<tr>
<td>Variance</td>
<td>994.53</td>
<td>900.633</td>
<td>969.636</td>
<td>910.931</td>
<td>929.415</td>
</tr>
<tr>
<td>Std Error</td>
<td>1.683</td>
<td>1.38</td>
<td>1.514</td>
<td>1.526</td>
<td>1.704</td>
</tr>
<tr>
<td>Coeff Var</td>
<td>1.443</td>
<td>1.31</td>
<td>1.341</td>
<td>1.322</td>
<td>1.27</td>
</tr>
<tr>
<td>Minimum</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Maximum</td>
<td>260.8</td>
<td>260.8</td>
<td>260.8</td>
<td>260.8</td>
<td>260.8</td>
</tr>
</tbody>
</table>
14.6 Top Cut Capping

The silver composite file was used for a capping analysis. The composited silver grades were displayed using a log probability plot and a log histogram plot (Figures 14.7 and 14.8). Both of these plots, in conjunction with the actual composite file, were used to assess the need for capping. Besides the lower grade limits, both of these plots show that the silver values generally belong to one single population. Inflection points along the log probability plot line and the coefficient of variation are normally used to govern an appropriate capping level to apply. These in conjunction with the low co-efficient of variation suggest that a capping limit of 135 opt should be used for the Bayhorse silver estimation. A total of seven composites were capped. The capped grade was calculated during the estimation. A summary of the statistics for un-capped composited sample assays are provided in Table 14.4.

Figure 14.7 Log Probability plot of the silver composites situated within the mineral lodes.
Figure 14.8 Log histogram of the silver composites situated within the mineralized horizon.

Table 14.4 Bayhorse Silver summary statistics of Un-capped composited grades within the mineralized horizon.

<table>
<thead>
<tr>
<th>NORMAL STATS</th>
<th>Composited Sample Grade (Ag opt) – Un capped</th>
<th>Composited Sample Grade (Ag opt) – Capped to 135 opt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>22.903</td>
<td>22.048</td>
</tr>
<tr>
<td>Median</td>
<td>13.8</td>
<td>13.9</td>
</tr>
<tr>
<td>Std Dev</td>
<td>30.011</td>
<td>25.316</td>
</tr>
<tr>
<td>Variance</td>
<td>900.633</td>
<td>640.895</td>
</tr>
<tr>
<td>Std Error</td>
<td>1.38</td>
<td>1.164</td>
</tr>
<tr>
<td>Coeff Var</td>
<td>1.31</td>
<td>1.148</td>
</tr>
<tr>
<td>Minimum</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Maximum</td>
<td>260.8</td>
<td>135</td>
</tr>
</tbody>
</table>
14.7 Grade Continuity (Variography)

Variography to examine grade continuity was conducted on the Bayhorse Silver composite assays located within the mineralized lodes and log spherical semi variograms were produced for silver. The variography directions were in line with those indicated by geology/mineralization interpretation. The variograms were used to obtain the search orientation ranges for the varying estimation runs.

The variography of the silver composites suggest a maximum continuity of grade of 20 m (65.6 ft) along a 099° strike orientation. The strike of the main zone of mineralization is oriented 100°, so this variogram is in line with the geological/mineralization interpretation. The second direction semi variogram (-18° dip towards 189°) which is aligned with the dip of mineralization showed a range of 22 m (72.2 ft). The silver direction 1, 2 & 3 semi variograms are shown in Figures 14.9 to 14.11.

Figure 14.9 Bayhorse Silver strike variogram for the composited silver sample data mineralization.
Figure 14.10 Bayhorse Silver cross strike variogram for the composited silver sample data mineralization.
A variable search orientation approach was adopted for the orientation of the search ellipsoid during grade estimation. A variable search was adopted due to the slight flexures noted in some of the lodes. This was accomplished by creating a 3-dimensional surface representing the general orientation of the lodes across the entire deposit area. The ‘mineralization surface’ showing the trend of the mineralization was then used to orient the search ellipsoid for the nearest block. This was accomplished by obtaining the dip and dip direction orientation data of the individual triangles for this trend surface. The triangle orientation data was then used to code the blank block model using inverse distance to the power of one, which essentially coded the model with the dip and dip direction information from the trend surface (Figure 14.12). The dip/dip direction data in the block model was then used to orient the search ellipsoid. That is, if a lode was changing orientation (i.e. “folding over”) in a given area, then the search ellipsoid would similarly change orientation to compensate for this change for each block in the block model. The ranges of the search ellipsoid were sourced from the suggested ranges from the variographic analysis discussed above.
14.9 Bulk Density (Specific Gravity)

A total of 29 bulk density analyses were included in the Bayhorse Silver underground (drill core hole/channel sample) database. The density values represent laboratory SG analysis at American Analytical Laboratories for a small group of channel samples collected by Bayhorse. Subsequently, laboratory SG analyses were completed at ALS Laboratories on 7 composite grab samples that were collected by Mr. Andrew Turner (APEX) from the Intermediate Level workings in and around the Big Dog stope during his visit to the Property in August of 2018.

The bulk density samples were coded with the corresponding silver grades. The mean density values were examined on a whole and then broken down to corresponding grade cut off values. As the mineralization interpretation was completed on an approximate 2 opt (68.57 ppm) silver cut-off grade and it is anticipated that this cut-off grade is similar to the anticipated mining cut-off grade, it was decided to apply a mean density to the entire block model. A nominal mean density value of 2.80 kg/m3 was selected for use in the block model. Examination of the global dataset and different silver cut-off grades also guided this decision (Table 14.5). The assigned value of 2.80 kg/m3 was based on 21 density samples collected in and around zones of silver mineralization. The selected bulk density value compares well, although perhaps slightly conservative, in relation to the average density value of 2.88 kg/m3 obtained from the 7 confirmation samples collected by Mr. Turner (APEX) during his August 2018 site visit. Further density measurements are recommended in order to obtain a better representation of the density variation throughout the Bayhorse deposit.
Table 14.5 Bayhorse Silver density measurements broken down by silver cut-off grade (opt).

<table>
<thead>
<tr>
<th>NORMAL STATS</th>
<th>Density Values (kg/m3)</th>
<th>Density Values (kg/m3) with Ag values >= 2.5 opt</th>
<th>Density Values (kg/m3) with Ag values >= 5.0 opt</th>
<th>Density Values (kg/m3) with Ag values >= 7.5 opt</th>
<th>Density Values (kg/m3) with Ag values >= 10.0 opt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>2.79</td>
<td>2.80</td>
<td>2.86</td>
<td>2.87</td>
<td>2.87</td>
</tr>
<tr>
<td>Median</td>
<td>2.76</td>
<td>2.77</td>
<td>2.805</td>
<td>2.79</td>
<td>2.785</td>
</tr>
<tr>
<td>Std Dev</td>
<td>0.246</td>
<td>0.214</td>
<td>0.205</td>
<td>0.229</td>
<td>0.24</td>
</tr>
<tr>
<td>Variance</td>
<td>0.06</td>
<td>0.046</td>
<td>0.042</td>
<td>0.052</td>
<td>0.057</td>
</tr>
<tr>
<td>Std Error</td>
<td>0.046</td>
<td>0.047</td>
<td>0.053</td>
<td>0.066</td>
<td>0.072</td>
</tr>
<tr>
<td>Coeff Var</td>
<td>0.088</td>
<td>0.076</td>
<td>0.072</td>
<td>0.08</td>
<td>0.084</td>
</tr>
<tr>
<td>Minimum</td>
<td>2.42</td>
<td>2.49</td>
<td>2.51</td>
<td>2.51</td>
<td>2.51</td>
</tr>
<tr>
<td>Maximum</td>
<td>3.39</td>
<td>3.36</td>
<td>3.36</td>
<td>3.36</td>
<td>3.36</td>
</tr>
<tr>
<td>Total data</td>
<td>29</td>
<td>21</td>
<td>15</td>
<td>12</td>
<td>11</td>
</tr>
</tbody>
</table>

14.10 Block Model Extents and Block Size

A parent block size of 4 m (X) x 4 m (Y) x 4 m (Z) (4 m = 13.12 ft) was chosen for the Bayhorse Silver block model. This is deemed appropriate based on this being an underground operation and the mine engineers will require a small SMU (Selective Mining Unit - the smallest volume of material on which ore/waste classification is determined) for their mine design. The block model extents were extended beyond the mineralized wireframe to encompass the entire domain. The coordinate ranges and block size dimensions used to build the Bayhorse Silver 3-D block model from the mineralization wireframes are presented in Table 14.6. Sub-blocking of 1 m (X) x 1 m (Y) x 1 m (Z) (1 m = 3.28 ft) was used to more effectively honor the volumes and shapes created during the geological interpretation of the mineralized wireframe or lode (Table 14.7). Grade was interpolated for the parent blocks and assigned to the sub-blocks. Each block was coded with the lode number so that grade could be estimated as hard boundaries.

Table 14.6 Block model extents and cell dimensions for the Bayhorse Silver block model.

<table>
<thead>
<tr>
<th>Deposit</th>
<th>Block Model Description</th>
<th>Easting (m)</th>
<th>Northing (m)</th>
<th>Elevation (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bayhorse Silver</td>
<td>Maximum</td>
<td>482515</td>
<td>4922066</td>
<td>749</td>
</tr>
<tr>
<td></td>
<td>Minimum</td>
<td>482251</td>
<td>4921922</td>
<td>698</td>
</tr>
<tr>
<td></td>
<td>Parent Cell Size</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Sub Block Cell Size</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Table 14.7 Bayhorse Silver volume comparison of lode wireframe versus block model.

<table>
<thead>
<tr>
<th>Lode</th>
<th>Wireframe Volume (m³)</th>
<th>Block Model Volume (m³)</th>
<th>Percent Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lode01 - West</td>
<td>60,645</td>
<td>60,875</td>
<td>0.38%</td>
</tr>
<tr>
<td>Lode02 - East</td>
<td>40,117</td>
<td>40,482</td>
<td>0.90%</td>
</tr>
<tr>
<td>Total</td>
<td>100,762</td>
<td>101,357</td>
<td>0.59%</td>
</tr>
</tbody>
</table>

14.11 Grade Estimation

The Bayhorse deposit mineral resource was estimated for silver, which was calculated using inverse distance squared (ID2). An Ordinary Kriging (OK) estimation was also completed but the ID2 estimation returned better validation results than the OK estimate. Estimation was only calculated on parent blocks. A block discretization of 4 x 4 x 1 was applied to all blocks during estimation. The mineralized horizon was estimated with ‘hard boundaries’. Hard boundaries means that only composite assays located within each lode were used to estimate the grade of the blocks within that lode. Soft boundaries on the other hand use composite samples located in adjacent lodes for the estimation of blocks.

Four (4) passes of grade estimation were completed in order to assign grade to the Bayhorse block model. The size of the an-isotropic search ellipsoid was based on the suggested ranges obtained from the variography. Estimation runs 1 to 2 (for silver) equated to ranges less than or equal to the maximum range observed in the variography. During the final two estimation ‘runs’, the search ranges were expanded further to ensure all blocks were estimated with grade. The criteria for the number of composites to be selected from the number of drillholes decreased with each run, as the search ellipsoid size increased. This was designed to ensure that the highest confidence blocks (i.e. those closes to data points) had grade assigned (estimated) during the first two (2) runs. The estimation criteria for each pass is provided in Table 14.8.

The block model was populated into the historic working and the remnant ore volume separately and coded accordingly. The blocks located within the workings were coded with “Status = Mined Out” and the remnant mineralization (remaining resource blocks) were coded with “Status = Remnant”. Sub-blocking was used to honour the volume of the historic workings. The “mined out” blocks were removed from the reported resources.
Table 14.8 Estimation and search ellipsoid criteria for the Bayhorse Silver resource calculation.

<table>
<thead>
<tr>
<th>Estimation</th>
<th>Run No.</th>
<th>Minimum No. of Holes</th>
<th>Minimum No. of Samples</th>
<th>Search Ellipsoid Radius (m) (Silver)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bayhorse Silver</td>
<td>1</td>
<td>6</td>
<td>12</td>
<td>15 x 15 5</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>6</td>
<td>12</td>
<td>20 x 20 x 5</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>40 x 40 x 10</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>240 x 240 x 240</td>
</tr>
</tbody>
</table>

14.12 Model Validation

14.12.1 Visual Validation

The blocks were visually validated on transform cross section comparing block grades versus the sample composite grades (Figures 14.13 and 14.14). In addition, the block and sample data were compared by globally, easting, northing and elevation. These easting, northing and elevation comparisons are presented in Figures 14.15 to 14.17.
Figure 14.14 Transform cross section of Bayhorse silver deposit showing Bayhorse Silver Block silver grade (opt) versus composited sample grade.

14.12.2 Statistical Validation

Table 14.9 show the average silver grade of the composited sample data versus the calculated block model grade data. It can be concluded that the average/mean grade of the ID2 block model data is very close to the composited sample data. Given the limited composite data this is considered acceptable.

Table 14.9 Calculated grade (0% lower cut-off) of model versus composited average sample grades by lode for the Bayhorse Silver estimation.

<table>
<thead>
<tr>
<th>Lode</th>
<th>No. of Composites</th>
<th>Composite Data Mean Silver Value (opt)</th>
<th>ID2 Block Model Mean Silver Value (opt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global</td>
<td>486</td>
<td>22.05</td>
<td>20.7</td>
</tr>
</tbody>
</table>
14.12.3 Northing Comparison

The input sample composite average and the calculated block model grade were calculated on 20 m (65.6 ft) composite sections along northings (Figure 14.15). This is essentially along the strike of the Bayhorse Silver deposit (100° strike). The purpose was to compare the input sample file with the resulting block model data to make sure there was no gross over or under estimation occurring. The northing composites generally compare quite well. There is some local over and under estimation observed but this in line with expectations of the input data quality. Overall the block averages follow the general trend of the input sample data.

Figure 14.15 Northing SWATH plot of sample composite average grade versus estimated grade in the block model for silver.

14.12.4 Easting Comparison

The input sample composite average and the calculated block model grade were calculated on 20 m (65.6 ft) composite sections across eastings (Figure 14.16). This is sub parallel to the strike of the Bayhorse Silver deposit (100° strike). The purpose was to compare the input composite sample file with the resulting block model data to make sure there was no gross over or under estimation occurring. The east composites generally compare quite well. Overall the block averages follow the general trend of the input sample data.
14.12.5 Elevation Comparison

The input sample composite average and the calculated block model grade were calculated on 5 m (16.4 ft) composite sections down through the elevation (Figure 14.17). This is down dip of the Bayhorse Silver deposit. The purpose was to compare the input composite sample file with the resulting block model data to make sure there was no gross over or under estimation occurring. The elevation composites generally compare quite well. Overall the block averages follow the general trend of the input sample data.

14.13 Resource Classification

The Bayhorse Silver mineral resource estimate discussed in this report has been classified in accordance with guidelines established by the CIM “Estimation of Mineral Resources and Mineral Reserves Best Practice Guidelines” dated November 23rd, 2003 and CIM “Definition Standards for Mineral Resources and Mineral Reserves” dated May 14th, 2014.
A ‘Measured Mineral Resource’ is that part of a Mineral Resource for which quantity, grade or quality, densities, shape, physical characteristics are estimated with confidence sufficient to allow the application of Modifying Factors to support detailed mine planning and final evaluation of the economic viability of the deposit. Geological evidence is derived from detailed and reliable exploration, sampling and testing and is sufficient to confirm geological and grade or quality continuity between points of observation. A Measured Mineral Resource has a higher level of confidence than that applying to either an Indicated Mineral Resource or an Inferred Mineral Resource. It may be converted to a Proven Mineral Reserve or to a Probable Mineral Reserve.

Mineralization or other natural material of economic interest may be classified as a Measured Mineral Resource by the Qualified Person when the nature, quality, quantity and distribution of data are such that the tonnage and grade or quality of the mineralization can be estimated to within close limits and that variation from the estimate would not significantly affect potential economic viability of the deposit. This category requires a high level of confidence in, and understanding of, the geology and controls of the mineral deposit.

An ‘Indicated Mineral Resource’ is that part of a Mineral Resource for which quantity, grade or quality, densities, shape and physical characteristics are estimated with sufficient confidence to allow the application of Modifying Factors in sufficient detail to support mine
planning and evaluation of the economic viability of the deposit. Geological evidence is derived from adequately detailed and reliable exploration, sampling and testing and is sufficient to assume geological and grade or quality continuity between points of observation. An Indicated Mineral Resource has a lower level of confidence than that applying to a Measured Mineral Resource and may only be converted to a Probable Mineral Reserve.

Mineralization may be classified as an Indicated Mineral Resource by the Qualified Person when the nature, quality, quantity and distribution of data are such as to allow confident interpretation of the geological framework and to reasonably assume the continuity of mineralization. The Qualified Person must recognize the importance of the Indicated Mineral Resource category to the advancement of the feasibility of the project. An Indicated Mineral Resource estimate is of sufficient quality to support a Pre-Feasibility Study which can serve as the basis for major development decisions.

An ‘Inferred Mineral Resource’ is that part of a Mineral Resource for which quantity and grade or quality are estimated on the basis of limited geological evidence and sampling. Geological evidence is sufficient to imply but not verify geological and grade or quality continuity. An Inferred Mineral Resource has a lower level of confidence than that applying to an Indicated Mineral Resource and must not be converted to a Mineral Reserve. It is reasonably expected that the majority of Inferred Mineral Resources could be upgraded to Indicated Mineral Resources with continued exploration.

An Inferred Mineral Resource is based on limited information and sampling gathered through appropriate sampling techniques from locations such as outcrops, trenches, pits, workings and drill holes. Inferred Mineral Resources must not be included in the economic analysis, production schedules, or estimated mine life in publicly disclosed Pre-Feasibility or Feasibility Studies, or in the Life of Mine plans and cash flow models of developed mines. Inferred Mineral Resources can only be used in economic studies as provided under NI 43-101.

There may be circumstances, where appropriate sampling, testing, and other measurements are sufficient to demonstrate data integrity, geological and grade/quality continuity of a Measured or Indicated Mineral Resource, however, quality assurance and quality control, or other information may not meet all industry norms for the disclosure of an Indicated or Measured Mineral Resource. Under these circumstances, it may be reasonable for the Qualified Person to report an Inferred Mineral Resource if the Qualified Person has taken steps to verify the information meets the requirements of an Inferred Mineral Resource.

The 2018 Bayhorse Silver Mineral Resource has been classified as an Inferred Resources according to the CIM definition standards. The classification of the Bayhorse Silver Inferred Resource was based on geological confidence, data quality and grade continuity. The most relevant factors used in the classification process were:

- Channel/Drillhole spacing density.
• Level of confidence in the geological interpretation. The observed stratigraphic horizons are easily identifiable along strike and across the deposit which provides confidence in the geological and mineralization continuity.

• Estimation parameters i.e. continuity of mineralization.

• Proximity to drillholes.

• Drillhole database data density.

• Lack of survey information of some of the channel line composites.

• Historic nature of the relevant production/channel line plans.

Based on the points noted above, this maiden mineral resource estimate for the Bayhorse silver deposit has been classified as Inferred. It is anticipated that with the addition of further drill holes/channel samples located up/down dip and along strike that portions of this resource could potentially be upgraded.

Firstly, it is important to note that the Bayhorse deposit has seen small-scale periodic mining activity over the last 100 years with the most recent mining activity taking place in the mid-1980s. Thus, it is logical to assume that, at certain times in the past, the tenor of the Bayhorse mineralization and the economic parameters of the day were considered sufficiently positive in order to warrant mining activity.

In order to demonstrate that the Bayhorse Silver Deposit has potential for future economic extraction, the unconstrained resource block model was evaluated at various lower cut-off scenarios. The underground resource was constrained using the historic underground drives and the modelled widths of the mineralized zone to construct the mineralization wireframe/lode. The blocks within this were then estimated and reported at a lower cut-off of 7.5 opt (257.14 ppm) Ag. At recent silver prices, this would represent a gross metal value of approximately US$100.00/ton, which represents a reasonable underground mining costs associated with a potential block and cave (standard stoping) mining scenario.

Overall, the authors of this Technical Report consider that these assumptions are reasonable for the purpose of determining ‘reasonable prospects for future economic extraction’ of the Bayhorse Silver Deposit, required for the purpose of reporting this maiden inferred mineral resource estimate. That being said, the reader is cautioned that the mineral resources discussed herein are not a ‘mineral reserve’ and they do not have demonstrated economic viability. However, it is reasonably expected that the majority of the inferred mineral resources could be upgraded to indicated mineral resources with continued exploration. There is no guarantee that any part of the mineral resources discussed herein will be converted into a mineral reserve in the future. The estimate of mineral resources may be materially affected by environmental, permitting, legal, marketing or other relevant issues.
14.15 Mineral Resource Reporting

The Bayhorse Silver Inferred Mineral Resource Estimate is reported in accordance with the Canadian Securities Administrators National Instrument 43-101 and has been estimated in accordance with the CIM “Estimation of Mineral Resources and Mineral Reserves Best Practice Guidelines” dated November 23rd, 2003 and CIM “Definition Standards for Mineral Resources and Mineral Reserves” dated May 10th, 2014.

The Bayhorse silver (Ag) resource has been estimated within three dimensional solids that were created from cross-sectional lode interpretation. The eastern end of the mineralization lode has been cut by topography. Grade was estimated into a block model with parent block size of 4 m (X) by 4 m (Y) by 4 m (Z) (4 m = 13.12 ft) and sub-blocked down to 1 m (X) by 1 m (Y) by 1 m (Z) (1 m = 3.28 ft). A total of 29 bulk density samples were available for review. The 29 bulk density samples were examined with respect to the silver cut-off grade with the aim of providing an accurate reflection of the expected mining tonnage. The density measurements range from 2.42 g/cm3 to 3.39 g/cm3. The assigned value of 2.80 kg/m3 was determined relative to a conservative lower cut-off grade of 2.5 opt (85.7 ppm) Ag and was based on 21 density measurements from samples collected in and around areas of higher grade silver mineralization. Grade estimation of silver was performed using the Inverse Distance squared (ID2) methodology and verified using ordinary kriging. The Inferred Mineral Resources are constrained within an interpreted geological lode representing primarily altered and mineralized rhyolite along a variably south dipping 'horse fault' structure with the generally flat-lying Sunshine Thrust Fault system. The mineralization lodes have overall dimensions of approximately 800 ft (245 m) along strike east-west, 200 ft (60 m) across strike and 23 ft (7 m) in thickness.

The block model was populated into the historic workings and the remnant ore volume separately and coded accordingly. The blocks located within the workings were coded with “Status = Mined Out” and the remnant mineralization (remaining resource blocks) were coded with “Status = Remnant”. Sub-blocking was used to honour the volume of the historic workings. The “mined out” blocks were removed from the reported resources.

The Bayhorse Silver Inferred Mineral Resource Estimate is reported at a range of silver cut-off grades in Table 14.10. No portion of the current mineral resource has been assigned to the “Indicated” or “Measured” categories. The maiden Bayhorse Silver mineral resource, using a cut-off grade of 7.5 opt (257.14 ppm) Ag, comprises an Inferred Mineral Resource of 292,300 tons (265,170.1 tonnes) at 21.65 opt (742.29 ppm) Ag. The base case cut-off of 7.5 opt Ag is highlighted in the table below. Other cut-off grades are presented for review ranging from 0 to 12.5 opt (428.57 ppm) Ag for sensitivity analyses.

The 2018 Bayhorse Silver Deposit Mineral Resource has been classified as an Inferred Resource according to recent CIM definition standards. The classification of the Bayhorse Silver resources was based on geological confidence, data quality and grade continuity. No portion of the current mineral resource has been assigned to the “Indicated” or “Measured” categories. The inferred mineral resource is reported at a lower cut-off of 7.5 opt (257.14 ppm) silver, which represents expected underground costs associated with a potential block and cave (stoping) mining scenario. Inferred mineral resources are not mineral reserves and do not have demonstrated economic viability. There has been insufficient exploration/resource definition drilling to define the inferred...
resources as an indicated or measured mineral resource, however, it is reasonably expected that the majority of the inferred mineral resources could be upgraded to indicated mineral resources with continued exploration.

Table 14.10 Bayhorse Inferred Mineral Resource Estimate for silver at a variety of lower cut-off grades (the reported mineral resource is highlighted).

<table>
<thead>
<tr>
<th>Classification</th>
<th>Cut-off Grade (opt Ag)**</th>
<th>Tonnage (short tons)</th>
<th>Ag Grade (opt)</th>
<th>Ag Grade (ppm)</th>
<th>Contained Ag*** (troy oz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inferred *</td>
<td>0</td>
<td>312,800</td>
<td>20.51</td>
<td>703.3</td>
<td>6,417,300</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>305,800</td>
<td>20.94</td>
<td>718.1</td>
<td>6,404,100</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>301,700</td>
<td>21.18</td>
<td>726.0</td>
<td>6,388,900</td>
</tr>
<tr>
<td></td>
<td>7.5</td>
<td>292,300</td>
<td>21.65</td>
<td>742.4</td>
<td>6,328,400</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>275,500</td>
<td>22.43</td>
<td>769.0</td>
<td>6,178,100</td>
</tr>
<tr>
<td></td>
<td>12.5</td>
<td>253,700</td>
<td>23.39</td>
<td>801.9</td>
<td>5,934,000</td>
</tr>
</tbody>
</table>

* Inferred mineral resources are not mineral reserves. Mineral resources, which are not mineral reserves, do not have demonstrated economic viability. There has been insufficient exploration to allow for the classification of the inferred resources tabulated as an indicated or measured mineral resource, however, it is reasonably expected that the majority of the inferred mineral resources could be upgraded to indicated mineral resources with continued exploration. There is no guarantee that any part of the mineral resources discussed herein will be converted into a mineral reserve in the future. The estimate of mineral resources may be materially affected by environmental, permitting, legal, marketing or other relevant issues.

** A price of $15 (U.S.)/ounce silver with a conceptual underground mining and processing cost of $100 (U.S.)/ton has been utilized to derive the favoured lower cut-off for Ag of 7.5 oz/t.

*** Grade in parts per million and contained ounces may not add due to rounding.

15.0 ADJACENT PROPERTIES

No currently active mines are known to exist in the vicinity of the Bayhorse Mine although there are a number of small abandoned underground and surface historic workings in the surrounding district. West of, and upslope from, the Bayhorse property there are the remains of a small gypsum mine that quarried the sulfate hosted by Weatherby Formation rocks.

One of the more significant historic bedrock mining properties in the District was the Connor Creek gold mine (Loughlin, 1933; Brooks and Ramp, 1968). It is located approximately 12.5 miles (20 km) north-northwest of the Bayhorse Mine, west of the North Fork of Connor Creek and 2.2 miles (3.5 km) from the Snake River. However, this property shows no geological resemblance to the Bayhorse; it comprises a pyritic, gold-bearing quartz vein that lacks tetrahedrite-tennantite or significant amounts of Cu, Pb and Zn sulphides. In addition, it is hosted by a different package of rocks than the Bayhorse mineralization.
16.0 OTHER RELEVANT DATA AND INFORMATION

The authors are not aware of any other relevant material data and information that would result in misleading statements regarding the Bayhorse Mine property.

17.0 INTERPRETATION AND CONCLUSIONS

Prior to Bayhorse Silver’s recent exploration and underground program the property had not been subjected to any serious or systematic exploration since the early 1980’s. Furthermore, it is believed that no significant surface drilling, geophysical surveys, or geochemical soil programs have ever been completed over the Property. Consequently, the Bayhorse Project was regarded to be a grassroots exploration property, although the known presence of bonanza grade silver with multi-percent Cu, Zn and Pb as well as historic mining suggested it had economic potential. In 2015, the Company planned and executed an exploration program that would hopefully lead to the confirmation of the presence of Ag-rich mineralization with sufficient tonnage and metal grades to potentially support a future underground mine operation.

The Bayhorse Silver Property is located in Baker County, eastern Oregon, and lies approximately 7.5 miles (12 km) north of Huntington (population 440) and 34 miles (55 km) north-northwest of Ontario (population 11,500). It is situated on the steep western slopes of the south-flowing Snake River, which in the late 1950’s was dammed to make the Brownlee Reservoir. The property is easily road accessible, with access from the town of Huntington by taking the Snake River road and driving 8.7 miles (14 km) northwards along the western side of the Snake River valley.

There are three historical underground workings, each of which has a portal; of these only the two higher adits are currently open. These three workings comprise the Upper, the Intermediate (also known as the “84” because it was made accessible from surface during the 1983-84 Silver King campaign of mining), and the Lower Levels. The two higher levels are accessible via portals that have recently been rehabilitated. All parts of the Lower Level are accessible, although the portal currently needs minor rehabilitation work, therefore the workings are temporarily closed off. The Upper Level at 2373 ft (723 m) above sea level (asl) elevation leads into the silver-rich Sunshine Stope while the Intermediate Level was opened to access the Big Dog Stope, which ranges in elevation from 2350 to 2405 ft (716.3 to 733 m) asl. Most of the underground workings are on patented ground and extend underground westward into the hillside for more than 1,000 ft (305 m). Bayhorse recently completed a raise between the Intermediate and the Upper Levels that acts as an escape route; during construction of the raise the moderately mineralized Legend Zone was discovered.

Historical underground mining mainly took place in the 1920’s and 1980’s. Evidence of this work includes the three underground levels and the recently rehabilitated adits for the Intermediate and Upper Levels. The initial period of underground mining between 1920 and 1925 was operated by the U.S. Metal Company. Three areas were stoped and the mineralized rock was shipped to the Bunker Hill Smelter in Idaho and the Tacoma Smelter in Washington. Full (1959) states that a minimum of 5,059 tons was shipped from which 145,469 ounces of silver was produced at an
average grade of 28.75 oz/t (985.7 ppm) silver (Ag). However, the reader is cautioned that this production and grade data cannot be confirmed and therefore should not be relied upon.

In 1976, Cordex Exploration Co. completed an extensive exploration program that involved underground and surface geological mapping, geochemical sampling and drilling four diamond drill holes (Ibex #1 to Ibex #4; Wallace, 1976). At least 521 grab rock samples representing various non-mineralized rock types and sulphide-bearing mineralized material were collected. Of these, a total of 34 samples collected mostly from underground contained significant amounts of silver, as well as sporadically high values of copper, zinc and lead. Silver values in the 34 mineralized samples generally ranged between 1 to 15 oz/t (34.3 to 514.3 ppm), although a few samples contained bonanza grades that yielded up to a maximum of 149.6 oz/t (5129.14 ppm) silver. Based on these silver values, the geology and the extent of the mineralization Herdrick (1981) estimated a “probable tonnage of 166,208 tons (150,781.4 tonnes) grading 17 to 20 oz/t (582.9 to 685.7 ppm) Ag at a cut-off of 7.5 oz/t (257.1 ppm). In his conclusions, Herdrick (1981) stated that "continuity of mineralization is projected to extend more than 600 feet westerly, beyond the previous exposures within the mine." The reader is cautioned that Herdrick’s (1981) “probable tonnage” estimates predate National Instrument 43-101 and are not consistent with current CIM standards for mineral resource estimation (as defined by the CIM Definition Standard on Mineral Resources or Ore Reserves dated May 10, 2014). These historic estimates are based upon limited or unknown data and should not be relied upon.

Increased precious metal prices in the early 1980’s resulted in a renewed interest in the Bayhorse Silver Mine. In 1984 Silver King Mines, Inc. completed underground development west of the historic Big Dog Stope, as well as bulk sampling, extensive underground drilling and channel sampling and reportedly extracted 5,718 tons (5,187.3 tonnes) of mineralized rock grading 16.7 oz/t (572.6 ppm) silver (Wise, 1984). However, the reader is strongly cautioned that this production and grade data cannot be confirmed and verified, therefore it should not be relied upon.

The Property is largely underlain by Early to Mid-Jurassic rocks of the Weatherby Formation and Upper Triassic rocks of the Huntington Formation, which occupy the southern parts of the claim block. The Weatherby Formation is a meta-sedimentary package with wackes, conglomerates, siltstones, argillites, tuffs and some gypsum and anhydrite-bearing units. It was deposited in a shallow marine environment and was subjected to low grade zeolite-greenschist regional metamorphism that resulted in foliated schistose or phyllitic fabrics. The underlying Huntington Formation northerly-dipping rocks include shallow water carbonate facies rocks but are dominated by a volcanic package that ranges in composition from basalt to rhyolite, although andesites are most common. The mafic rocks include flows, ash tuffs, bedded tuffaceous sediments, volcanic wacke and conglomerates, as well as some coarse tuff breccias. The Huntington Formation is the main host to the Bayhorse Mine silver-rich mineralization.

The Weatherby and Huntington rocks are intruded by a suite of rhyolite sills and dikes. These are considered important since much of the silver-rich mineralization at the mine appears to be genetically and spatially related to a rhyolite sill. In addition to the Huntington and Weatherby rocks, the property includes a number of young narrow mafic dikes that may be related to the Miocene-age Columbia River Volcanic Group. Several slumped areas with historic landslide debris are locally present along the steep east facing slopes of the Snake River Valley.
The Bayhorse Silver Deposit, being spatially related to the intrusive rhyolite, is either syn- or post Weatherby in age and may have formed in an epithermal or sub-epithermal environment. The deposit has a strong structural control along the prominent Sunshine Thrust Fault. Mineralization is dominated by various sulfosalts, including tetrahedrite-tennantite, together with abundant pale colored, low Fe-bearing sphalerite and possibly acanthite (Leitch, 2013). In addition, there is chalcopyrite and covellite with minor galena and pyrite mineralization. Gangue minerals include quartz-silica and carbonate with minor sericite, K-spar, chlorite and clay. Fracture-controlled Cu oxide mineralization as either malachite, azurite or black Cu-Mn wad is common in the vicinity of the Intermediate and Upper adits. Surface sulfosalts-sulphide mineralization is seen either in massive, 0.4 to 1.6 inch (1 to 4 cm) thick veins along rhyolite-andesite faulted contacts or as fracture-controlled replacements, veins and stockworks hosted by rhyolite.

Historical reports (Livingston, 1923; Anderson, 1923; Hershey, 1925) suggested that the underground mineralization occurs in a 40 to 80 ft (12 to 24 m) wide zone that dips steeply north, sub-parallel to the inclination of the rhyolite and Huntington volcanics. However, recent examinations by the authors of the rocks exposed in the Intermediate Level workings, including the Big Dog Stope (Ray 2018), suggests the rhyolite in part dips southerly, which is in contrast to what is observed on the surface at a somewhat higher elevation. Surface mapping conducted by Bayhorse’s Chief Geologist Dr. Conway, P.Geol. shows a northerly dip direction in many of the surface rocks. The reason for the different dip directions is currently unknown. However, rocks seen along the Intermediate Level workings lie below the Sunshine Thrust while many of the surface exposures lie above this structure; this may account for the difference in dip directions.

As well as being south dipping, the rhyolite in the Big Dog Stope area appears to have been folded as its margins vary between 025 and 075 degrees in dip. In this area the rhyolite is not a planar slab but shows pinch and swell features as well as other irregularities; the cause of the irregularities is unknown, but may be due to folding, boudinage, thrust movement or are the result of irregular intrusion. It also appears to vary in its strike from east-west in its more easterly portion near the Intermediate Level Portal to west-southwest or southwest further to the west.

In a recent new release (BHS208-23) dated August 16th, 2018, Mr. Graeme O’Neill, Bayhorse Silver Inc., CEO announced that the Company had reopened the last of the historic 1984 mine workings at the extreme western end of the Bayhorse Silver Mine, over 700 ft (213 m) from the portal. In addition, 550 ft (168 m) of existing on-strike haulage-way was opened with approximately 1,500 ft (457 m) of drifts, raises and limited stopes. This work exposed a substantial amount of mineralized material. The news release also reported that the recent assay sampling program revealed grades of up to 73 oz/t (2,505.9 ppm) Ag. The recent sampling supports the reported historic high grade silver assays, including those selected grab sample bonanza grades of up to 150 kg silver per tonne reported by Ray (2015). The silver-rich mineralization is accompanied by significant grades of base metals.

The recent underground work has revealed a much clearer picture of the of the high grade mineralization deep inside the mine and has allowed the authors to properly rectify and utilize all of the historic sampling results. In addition, sufficient access to the historic western workings at the Intermediate Level has allowed confirmatory sampling of these workings to be conducted by Bayhorse and the authors of this report.
The 16th of August 2018 news release reported the results of the Company’s recent grab and chip sampling from the Big Dog zone at the eastern end of the newly opened 550 ft (168 m) portion. Six of seven chip and grab samples yielded between 19.5 oz/t (668.6 ppm) Ag and 73.0 oz/t (2502.9 ppm) Ag. In addition, these samples assayed up to 6.0% Cu, 2.19% Zn and 3.07% Pb. However, the reader is cautioned that these chip and grab samples were hand selected and are not necessarily representative of the true grade of the entire mineralized zone. However, the authors of this report have conducted their own sampling and verified and confirmed much of the sampling results and the information obtained from Bayhorse and from Dr. Conway and, where appropriate, have utilized this information in their interpretations and conclusions.

The reader is cautioned that while the Bayhorse property is believed (for the reasons mentioned above) to have a good potential for hosting bonanza-grade Ag mineralization, the project faces the usual economic risks and uncertainties common to the precious and base metal exploration industry worldwide. One risk is the uncertainty of whether or not the precious and base metals can be recovered economically and if current prices of silver and base metals can be sustained; a significant fall in metal prices would seriously impact the economic viability of the exploration-mining operation. Other uncertainties include the US Federal and State governments regarding their granting title and permits, as well as the legal requirements required to undertake an exploration-mining program that would satisfy environmental standards.

Based upon the results of the data compilation, surveying and new access with sampling the authors have been able to model the current understanding of the mineralization envelope for the Bayhorse Deposit. The Bayhorse Silver resource has been estimated within three dimensional solids that were created from cross-sectional lode interpretation. The eastern end of the mineralization lode has been cut by topography. Grade was estimated into a block model with parent block size of 4 m (X) by 4 m (Y) by 4 m (Z) (4 m = 13.12 ft) and sub-blocked down to 1 m (X) by 1 m (Y) by 1 m (Z) (1 m = 3.28 ft). A total of 29 bulk density samples were available for review. The 29 bulk density samples were examined with respect to the silver cut-off grade with the aim of providing an accurate reflection of the expected resource tonnage. The density measurements range from 2.42 g/cm3 to 3.39 g/cm3. The assigned value of 2.80 g/cm3 was determined relative to a conservative lower cut-off grade of 2.5 opt (85.7 ppm) Ag and was based on 21 density measurements from samples collected in and around areas of higher grade silver mineralization. Grade estimation of silver was performed using the inverse distance squared methodology and verified using Ordinary Kriging. The Inferred Mineral Resources are constrained within an interpreted geological lode representing primarily altered and mineralized rhyolite along a variably south dipping ‘horse fault’ structure within or at the contact of the generally flat-lying Sunshine Thrust Fault system. The mineralization lodes have overall dimensions of approximately 800 ft (245 m) along strike east-west, 200 ft (60 m) across strike and 23 ft (7 m) in thickness.

The Bayhorse Silver Inferred Mineral Resource Estimate is reported at a range of silver cut-off grades in Table 17.1. No portion of the current mineral resource has been assigned to the “Indicated” or “Measured” categories. The Maiden Bayhorse Silver Mineral Resource, using a cut-off grade of 7.5 opt (257.1 ppm) Ag, comprises an Inferred Mineral Resource of 292,300 tons at 21.65 opt (742.5 ppm) Ag. The base case cut-off of 7.5 opt (257.1 ppm) Ag is highlighted in the table below. Other cut-off grades are presented for review ranging from 0 to 12.5 opt (428.6 ppm) Ag for sensitivity analyses.
The 2018 Bayhorse Deposit Mineral Resource has been classified as an Inferred Resource according to recent CIM definition standards. The classification of the Bayhorse mineral resources was based on geological confidence, data quality and grade continuity. No portion of the current mineral resource has been assigned to the “Indicated” or “Measured” categories. The inferred mineral resource is reported at a lower cut-off of 7.5 opt (257.1 ppm) Ag, which represents expected underground costs associated with a potential block and cave (stoping) mining scenario. Inferred mineral resources are not mineral reserves and do not have demonstrated economic viability. There has been insufficient exploration/resource definition drilling to define the inferred resources as an indicated or measured mineral resource, however, it is reasonably expected that the majority of the inferred mineral resources could be upgraded to indicated mineral resources with continued exploration.

Table 17.1 Bayhorse Inferred Mineral Resource Estimate for silver at a variety of lower cut-off grades, the reported mineral resource is highlighted.

<table>
<thead>
<tr>
<th>Classification</th>
<th>Cut-off Grade (opt Ag)**</th>
<th>Tonnage (short tons)</th>
<th>Ag Grade (opt)</th>
<th>Ag Grade (ppm)</th>
<th>Contained Ag*** (troy oz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inferred *</td>
<td>0</td>
<td>312,800</td>
<td>20.51</td>
<td>703.3</td>
<td>6,417,300</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>305,800</td>
<td>20.94</td>
<td>718.1</td>
<td>6,404,100</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>301,700</td>
<td>21.18</td>
<td>726.0</td>
<td>6,388,900</td>
</tr>
<tr>
<td></td>
<td>7.5</td>
<td>292,300</td>
<td>21.65</td>
<td>742.4</td>
<td>6,328,400</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>275,500</td>
<td>22.43</td>
<td>769.0</td>
<td>6,178,100</td>
</tr>
<tr>
<td></td>
<td>12.5</td>
<td>253,700</td>
<td>23.39</td>
<td>801.9</td>
<td>5,934,000</td>
</tr>
</tbody>
</table>

* Inferred mineral resources are not mineral reserves. Mineral resources, which are not mineral reserves, do not have demonstrated economic viability. There has been insufficient exploration to allow for the classification of the inferred resources tabulated as an indicated or measured mineral resource, however, it is reasonably expected that the majority of the inferred mineral resources could be upgraded to indicated mineral resources with continued exploration. There is no guarantee that any part of the mineral resources discussed herein will be converted into a mineral reserve in the future. The estimate of mineral resources may be materially affected by environmental, permitting, legal, marketing or other relevant issues.

** A price of $15 (U.S.)/ounce silver with a conceptual underground mining and processing cost of $100 (U.S.)/ton has been utilized to derive the favoured lower cut-off for Ag of 7.5 oz/t.

*** Grade in parts per million and contained ounces may not add due to rounding.

The Bayhorse Silver Inferred Mineral Resource Estimate is reported in accordance with the Canadian Securities Administrators National Instrument 43-101 and has been estimated in accordance with the CIM “Estimation of Mineral Resources and Mineral Reserves Best Practice Guidelines” dated November 23rd, 2003 and CIM “Definition Standards for Mineral Resources and Mineral Reserves” dated May 10th, 2014.

Historic drilling data and maps showing mining stopes in the Upper level indicate there are intersections of additional mineralization above the existing modelled mineralization. The data for these intersections is too sporadic and could not be modelled within the existing resource parameters. There are also intersections of mineralized material beyond (to the west of) the current workings based upon inaccessible workings and some historic drilling.
Based upon this sporadic data, the authors were able to model a thicker and more expanded 3-D solid, but with limited data support. The authors have classified the material in the expanded model that is outside of the above mineral resource model as a conceptual exploration target. The target comprises 200,000 to 250,000 tons with a potential range for grades of 10 to 20 opt (342.9 to 685.7 ppm) Ag for a range of 2 million to 5 million ounces of silver. The exploration target is conceptual in nature and there is insufficient data or exploration to define a mineral resource for the exploration target. It is uncertain if further exploration will result in the definition of additional mineral resources.

18.0 RECOMMENDATIONS

Since the acquisition of the Property, Bayhorse Silver Inc. has completed a significant exploration and mine reclamation program including surface geological mapping, re-timbering of the Upper and Intermediate portals, rock bolting, surveying and rehabilitation of select underground workings (most notably on the Intermediate Level), and the purchase and installation of the Steinert ore sorter. Additionally, an assay sampling program was conducted and a Maiden Inferred Mineral Resource Estimate for the Bayhorse Silver Deposit was completed by APEX. The US Mine Safety and Health Administration (MSHA) inspection requirements on the work performed to date are ongoing.

A brief examination of the Intermediate Level workings recently completed by the co-author (Ray, 2018) shows that both the mineralized rhyolite and the barren andesitic country rocks have been strongly affected by complex, multi-phase deformation that includes brittle thrusting and faulting, as well as possibly some folding and boudinage. In order to economically mine the ore zones it is essential that the structural displacements and controls of the rhyolite are better understood, particularly as the thrusting and some of the brittle faulting post-dates and offsets the mineralization. To do this the following is recommended:

(a) Hire a competent structural geologist who is experienced in underground mapping to accurately map the accessible Bayhorse workings. The aim of this work is to verify the overall southerly dip of the rhyolite and (if folded) whether the wavelength of the folds can be used to predict location of the ore-zones.
(b) Eventually, all the historic underground workings should be reopened and renovated to allow geological mapping to be conducted (once the walls are washed) and to provide stations for future underground drilling.
(c) The mineralized rhyolite with its highly variable southerly dip probably lies only a short distance above and south of the Intermediate level workings. The mineralized rhyolite may lie horizontally less than 40 ft (12.2 m) south of the haulage way, close to the Intermediate level portal. A drift should be driven from this area southwards to intersect and locate the rhyolite. Once located the ore could easily be extracted and milled as it would lie close to the portal. After the mineralized rhyolite is intersected the drift should continue southward to establish drill stations. Then a series of north directed drill holes could then be put down to intersect the south dipping rhyolite and confirm its location.
(d) The locations of the ongoing long hole drilling should be established by survey.
(e) In future, the locations of all underground and surface sample sites and drill pads
should be accurately recorded. A Master Data Base should be used to maintain a list
of all assay results for the Property.
(f) Further surface prospecting is recommended together with surface geochemical soil
sampling to identify other exploration targets on the property. Exploration should focus
on areas containing rhyolitic rocks in the Huntington and Weatherby formations.
(g) Bayhorse Silver is in discussion with a geophysical company regarding conducting a
ground or airborne geophysical survey that could involve either induced polarization
(IP) or electromagnetic (EM) methods. The mineralization appears to show a poor
magnetic response.
(h) Once the final interpretations of the geological, geophysical and geological data are
reviewed, Bayhorse Silver should select and test targets with an underground diamond
drill program, followed by additional metallurgical work, as well as resource and
economic studies.

The authors recommend a total of 15,000 ft (4,572 m) of core drilling at the Bayhorse deposit
area, as well the collection of bulk samples on the order of approximately 10,000 tons and
development of underground workings to be completed during 2019 at the Bayhorse deposit area
for a total cost of CDN$2,750,000 (US$2,116,400). In addition to the drilling and bulk sampling in
the deposit area, recommended property wide exploration activities include geological mapping,
geochemical sampling, and a number of metallurgical, engineering and environmental studies.
The estimated cost to conduct the proposed property wide exploration activities over the entire
Project area is CDN$750,000 (US$577,200). The recommended budget for the entire work
program for 2019, including contingencies is CDN$3.85 million (USD$2.96 million).

The budget presented below in Table 18.1 is intended to summarize estimated costs for
completing the recommended work program described above for the Bayhorse Deposit and the
recommended property wide surface work program for the entire Project area.

Table 18.1 Bayhorse Silver 2019 budget for recommended work.

<table>
<thead>
<tr>
<th>Bayhorse Silver Underground Development & Drilling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target Area (Type)</td>
</tr>
<tr>
<td>-------------------------</td>
</tr>
<tr>
<td>Western Workings</td>
</tr>
<tr>
<td>Development UG 10x10ft</td>
</tr>
<tr>
<td>Bulk Sampling UG</td>
</tr>
<tr>
<td>Bulk Sample Processing</td>
</tr>
<tr>
<td>Core Drilling UG</td>
</tr>
<tr>
<td>Activities Subtotal</td>
</tr>
</tbody>
</table>
Property Wide Activities

<table>
<thead>
<tr>
<th>Activity Type</th>
<th>Cost</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geological Mapping & Consulting</td>
<td>$75,000</td>
<td>$57,720</td>
</tr>
<tr>
<td>Geochemical Sampling</td>
<td>$50,000</td>
<td>$38,480</td>
</tr>
<tr>
<td>Metallurgical Testwork</td>
<td>$75,000</td>
<td>$57,720</td>
</tr>
<tr>
<td>PEA (Study and Report)</td>
<td>$150,000</td>
<td>$115,440</td>
</tr>
<tr>
<td>Resource Modeling & Scoping Studies</td>
<td>$200,000</td>
<td>$153,920</td>
</tr>
<tr>
<td>Bonding / Environmental</td>
<td>$50,000</td>
<td>$38,480</td>
</tr>
<tr>
<td>Earthwork / Reclamation</td>
<td>$50,000</td>
<td>$38,480</td>
</tr>
<tr>
<td>Database Management</td>
<td>$40,000</td>
<td>$30,780</td>
</tr>
<tr>
<td>Property Maintenance (including Legal)</td>
<td>$60,000</td>
<td>$46,180</td>
</tr>
</tbody>
</table>

Property Wide Activities Subtotal

<table>
<thead>
<tr>
<th>Cost</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>$750,000</td>
<td>$577,200</td>
</tr>
</tbody>
</table>

Contingency (~5%)

<table>
<thead>
<tr>
<th>Cost</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>$350,000</td>
<td>$269,000</td>
</tr>
</tbody>
</table>

Grand Total

<table>
<thead>
<tr>
<th>Cost</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3,850,000</td>
<td>$2,962,600</td>
</tr>
</tbody>
</table>

APEX Geoscience Ltd.

Michael B. Dufresne, M.Sc., P.Geol., P.Geo
President, APEX Geoscience Ltd.

Andrew J. Turner, B.Sc., P.Geol., P.Geo.
Principal, APEX Geoscience Ltd.

Steven Nicholls, BA.Sc., MAIG
Senior Resource Geologist, APEX Geoscience Ltd.

Gerald E. Ray, Ph.D., P.Geo.
Independent Consulting Geologist
Edmonton, Alberta, Canada

Dated: November 1, 2018
REFERENCES

Anderson, C.N., 1923, Preliminary report of the Bayhorse Mine, Snake River District, Baker County, Oregon: Report by Carl N. Anderson, Consulting Mining Engineer, 418 Oregon Bldg., Portland, Oregon, 3 pages. There are apparently map plates (Full, 1959), but these are not in our collection.

Buchanan, L.J., 1981, Precious Metal Deposits associated with Volcanic Environments in the Southwest; in Relations of Tectonics to Ore Deposits in the Southern Cordillera; Arizona Geological Society Digest, Volume 14, pages 237-262.

Full, Roy P., 1959, Geologic report of the Bayhorse mine, Baker County, Oregon: Report by consulting geologist, Roy P. Full, April, 1959, 15 pages, 6 plates, 1 figure.

Jacobsen, V.Z., 1959, No Title: Report by V. Z. Jacobsen, mining engineer, on factual damages caused to the Bayhorse mine, directly and indirectly, by the completion of the Brownlee Dam, belonging to the Idaho Power Company, 20 January 1959, circa 20 pages.

CERTIFICATE OF AUTHOR

I, Michael B. Dufresne, M.Sc., P. Geol., P. Geo., do hereby certify that:

1. I am President of: APEX Geoscience Ltd. (APEX)
 Suite 200, 9797 – 45th Avenue
 Edmonton, Alberta T6E 5V8
 Phone: 780-439-5380

2. I graduated with a B.Sc. in Geology from the University of North Carolina at Wilmington in 1983 and with a M.Sc. in Economic Geology from the University of Alberta in 1987.

3. I am and have been registered as a Professional Geologist with the Association of Professional Engineers and Geoscientists of Alberta since 1989. I have been registered as a Professional Geologist with the association of Professional Engineers and Geoscientists of BC since 2011.

4. I have worked as a geologist for more than 25 years since my graduation from university and have extensive experience with exploration for, and the evaluation of, precious metal deposits, including epithermal silver (+/-gold) deposits.

5. I have read the definition of “Qualified Person” set out in National Instrument 43-101 (“NI 43-101”) and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfil the requirements to be a “Qualified Person.

7. APEX was retained as geological consultants in March 2018 by Bayhorse Silver Corporation (Bayhorse) and was tasked with completing a review of available current and historical data for the Project and the completion of a geological modeling and resource estimation effort for the Bayhorse deposit in May, 2018. Otherwise, I have had no prior involvement with the property that is the subject of the Technical Report.

8. I am not aware of any scientific or technical information with respect to the subject matter of the Technical Report that is not reflected in the Technical Report, the omission to disclose which makes the Technical Report misleading.

9. I am independent of the property and the issuer applying all of the tests in section 1.5 of NI 43-101.

10. I have read National Instrument 43-101 and Form 43-101F1, and the Technical Report has been prepared in compliance with that instrument and form.

11. I consent to the filing of the Technical Report with any stock exchange and other regulatory authority and any publication by them for regulatory purposes, including electronic publication in the public company files or their websites.

Dated: November 1, 2018
Edmonton, Alberta, Canada

Michael B. Dufresne, M.Sc., P. Geol., P. Geo.
CERTIFICATE OF AUTHOR

I, Andrew J. Turner, B.Sc., P.Geol., do hereby certify that:

1. I am a Principal and senior Geological Consultant with: APEX Geoscience Ltd.
 # 110, 8429 – 24th Street NW
 Edmonton, Alberta T6P 1L3
 Phone: 780-467-3532

2. My academic qualification is: Bachelor of Science, (Honors) Geology, received from the University of Alberta in 1989.

3. My professional affiliation(s): member of the Association of Professional Engineers and Geoscientists of Alberta (APEGA) since 1994 as well as the Northwest Territories and Nunavut Association of Professional Engineers and Geoscientists (NAPEGG).

4. I have worked as a geologist for nearly 30 years since my graduation from university and I have extensive experience with exploration for, and the evaluation of, precious metal deposits, including epithermal systems in Western Canada, the United States and Chile.

5. I have read the definition of “Qualified Person” set out in National Instrument 43-101 (“NI 43-101”) and certify that by reason of my education, affiliation with a professional association and past relevant work experience, I fulfill the requirements to be a “Qualified Person” for the purposes of NI 43-101.

6. I am responsible for contributions to Sections 1, 2, 4, 6, 12 to 17 pertaining to the compilation of historical data and the completion of geological modeling that are included in the Technical Report titled “Technical Report Maiden Resource Estimate For The Bayhorse Silver Deposit, Baker County, Oregon, USA”, and dated November 1, 2018 (the “Technical Report”). I visited the Property on August 15 and 16, 2018.

7. I have not had any involvement with the Property that is the subject of the Technical Report prior to my initial site visit conducted in August, 2018.

8. As of the date of this certificate, to the best of my knowledge, information and belief, the Technical Report contains all scientific and technical information that is required to be disclosed so as to make the Technical Report not misleading.

9. I am independent of the Property and the issuer applying all of the tests in section 1.5 of NI 43-101.

10. I have read National Instrument 43-101 and Form 43-101F1, and the Technical Report has been prepared in compliance with that Instrument and Form.

11. I consent to the public filing of the Technical Report and to extracts from, or a summary of the Technical Report, with any stock exchange and other regulatory authority and any publication by them, including electronic publication in the public company files on their website accessible by the public.

Dated: November 1, 2018
Edmonton, Alberta, Canada

Andrew J. Turner, B.Sc., P.Geol.
CERTIFICATE OF AUTHOR

I, Steven J. Nicholls, BA Sc (Geology), M AIG., do hereby certify that:

1. I am an employee of: APEX Geoscience Australia Pty Ltd. (APEX)
 2b Russell Street
 Fremantle, Western Australia 6160
 Phone: 08 9221-6200

2. I graduated with a Bachelor of Applied Science in Geology from the University of Ballarat in 1997.

3. I am and have been registered as a Member with the Australian Institute of Geoscientists, Australia (AIG) since 2007.

4. I have worked as a geologist for more than 20 years since my graduation from university and have extensive experience with exploration/resource estimation for, and the evaluation of, precious metal deposits of various types, including structure controlled-epithermal mineralization.

5. I have read the definition of “Qualified Person” set out in National Instrument 43-101 (“NI 43-101”) and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfil the requirements to be a “Qualified Person”.

6. I am responsible for section 14 along with contributions to sections 1, 10, 11, 12, and 18 of the Technical Report titled “Technical Report Maiden Resource Estimate For The Bayhorse Silver Deposit, Baker County, Oregon, USA”, and dated November 1, 2018 (the “Technical Report”). I have not performed a site visit to the Bayhorse Property.

7. I have not had any prior involvement with the Property that is the subject of the Technical Report.

8. I am not aware of any scientific or technical information with respect to the subject matter of the Technical Report that is not reflected in the Technical Report, the omission of which would make the Technical Report misleading.

9. I am independent of the property and the issuer applying all of the tests in section 1.5 of NI 43-101.

10. I have read National Instrument 43-101 and Form 43-101F1, and the Technical Report has been prepared in compliance with that instrument and form.

11. I consent to the filing of the Technical Report with any stock exchange and other regulatory authority and any publication by them for regulatory purposes, including electronic publication in the public company files or their websites.

Dated: November 1, 2018
Perth, Western Australia, Australia

Steven J. Nicholls, BA Sc (Geology), M AIG.
I, Gerald Edwin Ray, P.Geo. P. Eng., do hereby certify that:

(i) In order to undertake a field examination of the Bayhorse Mine property in Baker County, eastern Oregon, USA., and write this NI 43-101 technical report, I was contracted by Bayhorse Silver Inc. to work as an independent consulting geologist.

(ii) I graduated with a B.Sc., degree in Geology from the University of Bristol (UK) in 1966 and obtained a Ph.D., from the “Research Center for African Geology” at the Leeds University (UK) in 1970.

(iii) I am a member of the Association of Professional Geoscientists of British Columbia (License # 19503) and the Association of Professional Engineers of Saskatchewan (Member No. 2888).

(iv) I have worked as a field and economic geologist for a total of 44 years since my graduation from university. This has involved employment with government geological surveys (Malawi, Saskatchewan and British Columbia) and with junior and major exploration companies including Rio Tinto Zinc, Falconbridge and Billiton Minerals. This work included exploration for Archean and Proterozoic greenstone-hosted gold, Cu-Au skarns, IOCG’s, Cu porphyries and Au-Ag epithermal and meso-thermal deposits.

(v) I have read the definition of “qualified person” set out in the National Instrument 43-101 (“NI 43-101”) and certify that by reason of my education, affiliation with professional associations (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a “qualified person” for the purposes of NI 43-101.

(vii) I have had prior involvement with the property that is the subject of the Technical Report.

(viii) I am not aware of any material fact or material changes with respect to the subject matters of the Technical Report that is not reflected in the Technical Report, the omission to disclose which makes the Technical Report misleading.

(ix) I am independent of the issuer applying all the tests in section 1.5 of the National Instrument 43-101.

(x) I have read National Instrument 43-101 and Form 43-101FI, and the Technical Report has been prepared in compliance with that instrument and form.

(xi) I consent to the filing of the Technical Report with any stock exchange and other regulatory authority and any publication by them for regulatory purposes, including electronic publication in public company files on their websites accessible by the public, of the Technical Report.

Dated November 1, 2018.

G.E. Ray

Date: November 1, 2018
APPENDIX 1 – List of Abbreviations, Units and Measurements

$ - Dollar amount
%
- Per cent
′
- Minutes (in the context of latitude and longitude coordinates)
″
- Seconds (in the context of latitude and longitude coordinates)
°
- Degrees
°C
- Degrees Celsius
°F
- Degrees Fahrenheit
%RS
- Percentage of the Standard Deviation to the Mean
AA/AAS
- Atomic Absorption (Spectrometry)
ac
- Acre (0.0040469 km²)
Ag
- Silver
ALS
- ALS Global (analytical laboratories)
APEX
- APEX Geoscience Ltd.
As
- Arsenic
Au
- Gold
BLM
- Bureau of Land Management, U.S. Department of the Interior
CDN
- Canadian Dollar
CHIINV
- Chi Inverse statistical Analysis
cm
- Centimeter (0.3937 in)
Corp.
- Corporation
Cu
- Copper
EM
- Electromagnetic
et al.
- and others
FA
- Fire Assay
FA-AA
- Fire Assay with Atomic Absorption (Spectrometry) finish
Fm
- Formation
ft - Feet (0.3048 m)
g - Gram
g/t - Grams per tonne (equivalent to ppm, 1 g/t Au = 0.029167 oz/ton Au)
GIS - Geographic Information System
GPS - Global Positioning System
GSR - Gross Smelter Royalty
GSV - Gold Standard Ventures Corp.
Hz - Hertz (cycles per second)
ICP - Inductively Coupled Plasma geochemical analysis
 (ICP-AES, Atomic Emissions Spectrometry and ICP-MS, Mass Spectrometry)
ID - Idaho
ID2 - Inverse Distance Squared
in - Inch (2.54 cm)
Inc. - Incorporated
IP - Induced Polarization
ISO - International Standards Organization
kg - Kilogram (2.2046 lbs)
km - Kilometers (0.6214 mi)
km² - Square Kilometers (247.105 acres)
lb(s) - Pound(s)
m - Meter (3.2808 ft)
M - Million
mi - Mile (1.6093 km)
MIK - Multiple Indicator Kriging
ml - Milliliters
mm - Millimeters
Mt - Million tonnes
NI - National Instrument
NOI - Notice of Intent
NPV - Net Profit Interest
NSR - Net Smelter Royalty
oz - ounce (always referring to troy ounce when referring to gold grade)
oz/st - ounce(s) (eg. Gold) per short ton (equivalent to ounce per ton – opt or 1 oz/st = 34.2857 g/t or ppm)
opt - ounce(s) per short ton
Pb - Lead
PLSS - Public Land Survey System
PoO - Plan of Operations
ppb - Parts per billion
ppm - Parts per million (equivalent to grams per tonne, 1 g/t Au = 0.029167 oz/ton Au)
QAQC - Quality Assurance and Quality Control
R - Range (as in T30N, R53E)
RC - Reverse Circulation Drilling
SAD - Surface Area Disturbance
SD - Standard Deviation
SG - Specific Gravity or Density
st - short ton (2,000 lbs)
SW - Southwest
t - metric tonne (1000 kg = 2,204.6 lbs)
T - Township (as in T30N, R53E)
ton - imperial ton or short ton (2,000 lbs)
USA - United States of America
USD - US Dollar
UTM - Universal Transverse Mercator
wt% - Weight percentage
Zn - Zinc